Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 193, Pages 149–160 (Mi znsl4998)  

Stiefel orientations: existence and constructions

D. V. Fomin
Abstract: This article is devoted to a certain class of second order structures on vector bundles, so called Stiefel orientations. Their relation to Stiefel–Whitney classes and to each other is investigated. The question of their existence turns out to be closely related to some calculations in the classifying spaces. The main (but not the most difficult) constructive result is the following:
THEOREM 3: If $z_k$ is а $k$-dimensional Stiefel orientation on a bundle $\xi^n$, $1\leqslant k<m\leqslant n$, and $\binom{k}{i}$ is odd for all $i=1,2,\dots,m-k$, then (1) there exists a unique expansion
$$ Sq^{m-k}z_k=\pi^*(y_m)+\sum_{i=k}^{m-1}\pi^*(y_{m-i})Sq^{i-k}z_k, $$
$\pi: E(V_{n-k}(\xi))\mapsto E(V_{n-m}(\xi))$ being the standard projection and $\dim y_{m-i}=m-i$; (2) the class $y_m$ is an $m$-dimensional Stiefel orientation on $\xi^n$.
Bibliographic databases:
Document Type: Article
UDC: 515.145.23
Language: Russian
Citation: D. V. Fomin, “Stiefel orientations: existence and constructions”, Geometry and topology. Part 1, Zap. Nauchn. Sem. LOMI, 193, Nauka, Leningrad, 1991, 149–160
Citation in format AMSBIB
\Bibitem{Fom91}
\by D.~V.~Fomin
\paper Stiefel orientations: existence and constructions
\inbook Geometry and topology. Part~1
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 193
\pages 149--160
\publ Nauka
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4998}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1157149}
\zmath{https://zbmath.org/?q=an:0752.55011}
Linking options:
  • https://www.mathnet.ru/eng/znsl4998
  • https://www.mathnet.ru/eng/znsl/v193/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024