Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 193, Pages 10–38 (Mi znsl4990)  

Classification of quartics possessing a non-simple singular point. II

A. I. Degtyarev
Abstract: The paper is devoted to comparing two classifications, up to rigid isotopy and up to $PL$-homeomorphism, of surfaces of degree 4 in $\mathbb{C}p^3$ (quartics) possessing at least one non-simple singular point. The main $PL$-invariant to distinguish quartics is the obvious lattice morphism $\oplus M(O_i)\oplus<4>\mapsto K3$, $M(O_i)$ being the Milnor lattices of all the singular points of the quartic and $K3=2E_8\oplus3U$ being the intersection lattice of a nonsingular quartic. The main result is the following theorem.
THEOREM. With the exception of several cases a quartic $V$ is determined up to rigid isotopy by the corresponding lattice morphism. The exceptions are some quartics with the singular set of the type $X_9+\sum A_{2p_i-1}+\sum D_{2q_j}$, $\sum p_i+\sum(q_j+1)$ being equal to 6 or 7.
Some auxiliary results of the paper also may be of interest: the relation between the Milnor lattice of a singularity and the lattice of its resolution is established. This provides algebraically clear description of the Milnor lattices of most singularities.
Bibliographic databases:
Document Type: Article
UDC: 512.774
Language: Russian
Citation: A. I. Degtyarev, “Classification of quartics possessing a non-simple singular point. II”, Geometry and topology. Part 1, Zap. Nauchn. Sem. LOMI, 193, Nauka, Leningrad, 1991, 10–38
Citation in format AMSBIB
\Bibitem{Deg91}
\by A.~I.~Degtyarev
\paper Classification of quartics possessing a non-simple singular point.~II
\inbook Geometry and topology. Part~1
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 193
\pages 10--38
\publ Nauka
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4990}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1157141}
\zmath{https://zbmath.org/?q=an:0762.14017}
Linking options:
  • https://www.mathnet.ru/eng/znsl4990
  • https://www.mathnet.ru/eng/znsl/v193/p10
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024