|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 160–164
(Mi znsl4960)
|
|
|
|
Extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$
S. R. Treil'
Abstract:
The following description of extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$ is obtained.
Theorem. Let $\theta\in H^\infty(E\to E_*)$ and $\|\theta\|_\infty\leqslant1$. Then $\theta$ is an extreme point of the unit ball of $H^\infty(E\to E_*)$ if and only if at least one of two following conditions holds:
a)$\inf\{\|(I-\theta^*\theta)^{1/2}(e+\sum_{k\geqslant1}z^ke_k)\|:e_k\in E\}=0$, $\forall e\in E$;
b)$\inf\{\|(I-\theta\theta^*)^{1/2}(e+\sum_{k\geqslant1}\bar z^ke_k)\|:e_k\in E\}=0$, $\forall e\in E$.
Citation:
S. R. Treil', “Extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 160–164
Linking options:
https://www.mathnet.ru/eng/znsl4960 https://www.mathnet.ru/eng/znsl/v149/p160
|
Statistics & downloads: |
Abstract page: | 142 | Full-text PDF : | 51 |
|