Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 243, Pages 87–110 (Mi znsl496)  

This article is cited in 5 scientific papers (total in 5 papers)

The regularity theory for $(m,l)$-Laplacian parabolic equation

A. V. Ivanov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (267 kB) Citations (5)
Abstract: We present results on regularity for generalized solutions of equations of the form
\begin{equation} u_t-\operatorname{div}\{|u|^l|\nabla u|^{m-l}\nabla u\}=0, \quad m>1, \quad l>1-m, \tag{1} \end{equation}
obtained recently by the author. We prove a local $L_\infty$ estimate for generalized solutions of this equation (1) under the following condition on the parameters $m$$l$:
\begin{equation} \frac{\sigma+1}{\sigma+2}>\frac1m-\frac1n, \quad \sigma=\frac l{m-1}, \quad m>1, \quad l>1-m. \tag{2} \end{equation}
This condition was found by the author is a previous paper (Zapiski Nauchnykh Seminarov POMI, vol. 221, 83–113 (1995)). It was shown there that this condition is necessary for local boundedness of a generalized solution.
Received: 10.02.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 99, Issue 1, Pages 854–869
DOI: https://doi.org/10.1007/BF02673593
Bibliographic databases:
UDC: 517.9
Language: English
Citation: A. V. Ivanov, “The regularity theory for $(m,l)$-Laplacian parabolic equation”, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Zap. Nauchn. Sem. POMI, 243, POMI, St. Petersburg, 1997, 87–110; J. Math. Sci. (New York), 99:1 (2000), 854–869
Citation in format AMSBIB
\Bibitem{Iva97}
\by A.~V.~Ivanov
\paper The regularity theory for $(m,l)$-Laplacian parabolic equation
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 243
\pages 87--110
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629936}
\zmath{https://zbmath.org/?q=an:0928.35087}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 99
\issue 1
\pages 854--869
\crossref{https://doi.org/10.1007/BF02673593}
Linking options:
  • https://www.mathnet.ru/eng/znsl496
  • https://www.mathnet.ru/eng/znsl/v243/p87
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024