|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 142–149
(Mi znsl4957)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On asymptotics of Dirichlet's kernels of Fourier sums with respect to a polygon
A. N. Podkorutov
Abstract:
Given a polygon $W\in\mathbb R^2$, we study the behaviour of two-dimensional Dirichlet's kernels $D_{RW}(x,y)=\sum_{(n,m)\in RW}e^{-2\pi i(nx+my)}$ as $R\to+\infty$. It is well-known that $\|D_{RW}\|_{L([-1/2,1/2]^2)}\asymp\ln^2R$ for any polygon $W$ and that $\|D_{RW}-\hat\chi_{RW}\|=O(\ln R)$ if the coordinates of the vertices of $W$ are rational. We show that in general the second assertion does not hold. Namely, there is such a triangle $W$ that $\varlimsup_{R\to+\infty}\frac1{\ln^2R}(\|D_{RW}\|-\|\hat\chi_{RW}\|)>0$.
Citation:
A. N. Podkorutov, “On asymptotics of Dirichlet's kernels of Fourier sums with respect to a polygon”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 142–149
Linking options:
https://www.mathnet.ru/eng/znsl4957 https://www.mathnet.ru/eng/znsl/v149/p142
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 79 |
|