Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 142–149 (Mi znsl4957)  

This article is cited in 1 scientific paper (total in 1 paper)

On asymptotics of Dirichlet's kernels of Fourier sums with respect to a polygon

A. N. Podkorutov
Full-text PDF (344 kB) Citations (1)
Abstract: Given a polygon $W\in\mathbb R^2$, we study the behaviour of two-dimensional Dirichlet's kernels $D_{RW}(x,y)=\sum_{(n,m)\in RW}e^{-2\pi i(nx+my)}$ as $R\to+\infty$. It is well-known that $\|D_{RW}\|_{L([-1/2,1/2]^2)}\asymp\ln^2R$ for any polygon $W$ and that $\|D_{RW}-\hat\chi_{RW}\|=O(\ln R)$ if the coordinates of the vertices of $W$ are rational. We show that in general the second assertion does not hold. Namely, there is such a triangle $W$ that $\varlimsup_{R\to+\infty}\frac1{\ln^2R}(\|D_{RW}\|-\|\hat\chi_{RW}\|)>0$.
Bibliographic databases:
Document Type: Article
UDC: 512.10:435
Language: Russian
Citation: A. N. Podkorutov, “On asymptotics of Dirichlet's kernels of Fourier sums with respect to a polygon”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 142–149
Citation in format AMSBIB
\Bibitem{Pod86}
\by A.~N.~Podkorutov
\paper On asymptotics of Dirichlet's kernels of Fourier sums with respect to a~polygon
\inbook Investigations on linear operators and function theory. Part~XV
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 149
\pages 142--149
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4957}
\zmath{https://zbmath.org/?q=an:0592.42008}
Linking options:
  • https://www.mathnet.ru/eng/znsl4957
  • https://www.mathnet.ru/eng/znsl/v149/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024