Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 137–141 (Mi znsl4956)  

A supplement to the paper "The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L_1(0,1)$"

A. A. Mekler
Abstract: Let $\mathcal A$ be a countable partition of $[0,1]$ whose elements have positive measure. For $f\in L_1(0,1)$ the symbol $N_f$ denotes the smallest rearrangement invariant ideal sublattice of $L_1(0,1)$ containing $f$. Conditions are given under which $E(N_f|\mathcal A)\subset N_g$ for some $g\in L_1(0,1)$. It is also stated that $E(f|\mathcal A)\prec 2^5E(f^*|\mathcal A^*)$, where $\prec$ is the Hardy–Littlewood preorder on $L_1(0, 1)$ and $\mathcal A^*$ is a decreasing rearrangement of $\mathcal A$.
Bibliographic databases:
Document Type: Article
UDC: 513.88
Language: Russian
Citation: A. A. Mekler, “A supplement to the paper "The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L_1(0,1)$"”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 137–141
Citation in format AMSBIB
\Bibitem{Mek86}
\by A.~A.~Mekler
\paper A~supplement to the paper ``The countable partition averaging operator with respect to a~minimal rearrangement invariant ideal of the space $L_1(0,1)$''
\inbook Investigations on linear operators and function theory. Part~XV
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 149
\pages 137--141
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4956}
\zmath{https://zbmath.org/?q=an:0604.46030}
Linking options:
  • https://www.mathnet.ru/eng/znsl4956
  • https://www.mathnet.ru/eng/znsl/v149/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024