|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 127–136
(Mi znsl4955)
|
|
|
|
Measures on spaces of operators and isometries
A. L. Koldobskii
Abstract:
Let $\mu$ be a finite Borel (in the strong operator topology) measure on the space $B(E, F)$ of bounded linear operator from $E$ into $F$; $E$, $F$ being Banach spaces. Suppose that either $E=C(K)$, $F$ arbitrary, $p>1$ or $E=F=L^q(Y)$, $p>1$, $q>1$, $q\not\in[p,2]$. Suppose next that $\|e\|^p=\int\|Te\|^p\,d\mu(T)$ for every $e\in E$. Then $\mu$ is supported on scalar multiples of isometries.
Citation:
A. L. Koldobskii, “Measures on spaces of operators and isometries”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 127–136
Linking options:
https://www.mathnet.ru/eng/znsl4955 https://www.mathnet.ru/eng/znsl/v149/p127
|
Statistics & downloads: |
Abstract page: | 101 | Full-text PDF : | 48 |
|