Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 116–126 (Mi znsl4954)  

On a representation of symmetric functions in Carleman-Gevrey spaces

M. D. Bronshtein
Abstract: We study a representation $f(x)=\tilde f(\sigma_1(x),\dots, \sigma_d(x))$, $(x\in\mathbb R^d)$, of a symmetric function $f$, where $\sigma_j(x)$ is the symmetric homogeneous polynomial of degree $j$. Given a domain $\Omega$ in $\mathbb R^d$ and a non-decreasing sequence $\varphi$, the Carleman-Gevrey space $K^\varphi(\Omega)$ consists of functions $f\in C^\infty(\Omega)$ such that $|\partial_x^\alpha f(x)|\leqslant H^{|\alpha|+1}|\alpha|!\varphi(|\alpha|)$ for any bounded subdomain $\Omega'\subset\Omega$, $H_{f, \Omega'}$ being a positive constant. Let $S=\{(\sigma_1(x), \dots, \sigma_d(x)):x\in\mathbb R^d\}$.
Theorem. Let $\varphi$ and $\psi$ be non-decreasing sequences. Then for every symmetric $f\in K^\varphi(\mathbb R^d)$ there is $\tilde f\in K^\psi(S)$ if and only if $\psi(n)\geqslant\varphi(nd)\varepsilon^{n+1}$, $\varepsilon$ being a positive number not depending on $n$.
Bibliographic databases:
Document Type: Article
UDC: 517.28
Language: Russian
Citation: M. D. Bronshtein, “On a representation of symmetric functions in Carleman-Gevrey spaces”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 116–126
Citation in format AMSBIB
\Bibitem{Bro86}
\by M.~D.~Bronshtein
\paper On a representation of symmetric functions in Carleman-Gevrey spaces
\inbook Investigations on linear operators and function theory. Part~XV
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 149
\pages 116--126
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4954}
\zmath{https://zbmath.org/?q=an:0615.46033}
Linking options:
  • https://www.mathnet.ru/eng/znsl4954
  • https://www.mathnet.ru/eng/znsl/v149/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024