|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 116–126
(Mi znsl4954)
|
|
|
|
On a representation of symmetric functions in Carleman-Gevrey spaces
M. D. Bronshtein
Abstract:
We study a representation $f(x)=\tilde f(\sigma_1(x),\dots, \sigma_d(x))$, $(x\in\mathbb R^d)$, of a symmetric function $f$, where $\sigma_j(x)$ is the symmetric homogeneous polynomial of degree $j$. Given a domain $\Omega$ in $\mathbb R^d$ and a non-decreasing sequence $\varphi$, the Carleman-Gevrey space $K^\varphi(\Omega)$ consists of functions $f\in C^\infty(\Omega)$ such that $|\partial_x^\alpha f(x)|\leqslant H^{|\alpha|+1}|\alpha|!\varphi(|\alpha|)$ for any bounded subdomain $\Omega'\subset\Omega$, $H_{f, \Omega'}$ being a positive constant. Let $S=\{(\sigma_1(x), \dots, \sigma_d(x)):x\in\mathbb R^d\}$.
Theorem. Let $\varphi$ and $\psi$ be non-decreasing sequences. Then for every symmetric $f\in K^\varphi(\mathbb R^d)$ there is $\tilde f\in K^\psi(S)$ if and only if $\psi(n)\geqslant\varphi(nd)\varepsilon^{n+1}$, $\varepsilon$ being a positive number not depending on $n$.
Citation:
M. D. Bronshtein, “On a representation of symmetric functions in Carleman-Gevrey spaces”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 116–126
Linking options:
https://www.mathnet.ru/eng/znsl4954 https://www.mathnet.ru/eng/znsl/v149/p116
|
Statistics & downloads: |
Abstract page: | 107 | Full-text PDF : | 46 |
|