|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 107–115
(Mi znsl4953)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Сверточные уравнения в пространствах последовательностей с экспоненциальным ограничением роста
A. A. Borichev
Abstract:
We describe the solutions of convolution equations $S*x=0$ (on $\mathbb Z$ or $\mathbb Z_+$) in the spaces of sequences $X=X_{(\beta,\alpha)}=\bigcup_{\gamma<\alpha}\bigcup_{\delta<1/\beta}\{x:|x_n|\leqslant c\gamma^{|n|}, n<0; |x_n|\leqslant c\delta^n, n\geqslant0\}$, $0\leqslant\alpha<\beta\leqslant+\infty$. Every 1-invariant subspace $E$, $E\subset X$ equals $\operatorname{Ker} S$ for some $S$. After the Laplace transform $x\to\hat x$ the space $\hat E^\perp$ can be identified with $f\cdot A(K_{(\beta, \alpha)})$, where $K_{(\beta, \alpha)}=\{z:\beta<|z|<\alpha\}$. The space $E$ can be decomposed as $E=\operatorname{span}\{\{n^k\lambda^n\}_{n\in z}:\lambda\in\sigma\}+\{x\in X:x_k=0, k<m\}$ iff $f$ is a Weierstraas product (in $K_{(\beta, \alpha)}$) with zeros not accumulating to $|\lambda|=\beta$.
Citation:
A. A. Borichev, “Сверточные уравнения в пространствах последовательностей с экспоненциальным ограничением роста”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 107–115
Linking options:
https://www.mathnet.ru/eng/znsl4953 https://www.mathnet.ru/eng/znsl/v149/p107
|
Statistics & downloads: |
Abstract page: | 169 | Full-text PDF : | 62 |
|