Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 243, Pages 61–86 (Mi znsl495)  

This article is cited in 12 scientific papers (total in 12 papers)

Problem on the motion of two compressible fluids separated by a closed free interface

I. V. Denisova

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Abstract: A problem is considered on the simultaneous evolution of two barotropic capillary viscous compressible fluids occuping the whole space $\mathbb R^3$ and separated by a closed free interface. Under some restrictions on the viscosities of the eiquids, the local (in time) unique solvability of this problem is obtained in the Sobolev–Slobodetskii spaces. After the passage to the Lagrangean coordinates it is possible to exclude the renknown function of the fluid density from the system of equations. The proof of the solution existence of an nonlinear, non-coercive initial-boundary value problem received is based on the method of succesive approximations and on an explicite solution of a model linear problem with the plane interface between the eiquids. The restrictions on the viscosities mentioned above appear in the intermediate estimation of this explicit solution in the Sobolev spaces with an exponential weight.
Received: 30.03.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 99, Issue 1, Pages 837–853
DOI: https://doi.org/10.1007/BF02673592
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: I. V. Denisova, “Problem on the motion of two compressible fluids separated by a closed free interface”, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Zap. Nauchn. Sem. POMI, 243, POMI, St. Petersburg, 1997, 61–86; J. Math. Sci. (New York), 99:1 (2000), 837–853
Citation in format AMSBIB
\Bibitem{Den97}
\by I.~V.~Denisova
\paper Problem on the motion of two compressible fluids separated by a~closed free interface
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 243
\pages 61--86
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629932}
\zmath{https://zbmath.org/?q=an:0911.76079}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 99
\issue 1
\pages 837--853
\crossref{https://doi.org/10.1007/BF02673592}
Linking options:
  • https://www.mathnet.ru/eng/znsl495
  • https://www.mathnet.ru/eng/znsl/v243/p61
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024