Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 192, Pages 47–60 (Mi znsl4945)  

This article is cited in 2 scientific papers (total in 2 papers)

Complexity of solving linears systems in the rings of differential operators

D. Yu. Grigor'ev
Full-text PDF (726 kB) Citations (2)
Abstract: Let $\mathcal{A}_n=F[X_1,\dots,X_n,D_1,\dots,D_n]$ be Weyl algebra over a field $F$, i.e. the following relations hold: $X_iX_j=X_jX_i$, $D_iD_j=D_jD_i$, $X_iD_i=D_iX_i-1$, $X_iD_j=D_jX_i$ for $i\ne j$. Denote also by $\mathcal{K}_n=F(X_1,\dots,X_n)[D_1,\dots,D_n]\supset\mathcal{A}_n$ the ring of differential operators. Any element $a\in\mathcal{A}_n$ can be uniquely written in the form $a=\sum\limits_{I,J}a_{I,J}D_n^{i_n}\dots D_1^{i_1}X_1^{j_n}\dots X_1^{j_1}$, where $a_{I,J}\in F$, define $\mathrm{deg}(a)=\max\limits_{a_{I,J}\ne0}\{i_n+\dots+i_1+j_n+\dots+j_1\}$. In a similar way any element $b\in\mathcal{K}_n$ can be represented in the form $b=b_1b_2^{-1}$ where $b_1\in\mathcal{A}_n$ can a polynomial $b_2\in F[X_1,\dots,X_n]$ has the least possible degree, we define $\mathrm{deg}(b)=\max\{\mathrm{deg}(b_1),\mathrm{deg}(b_2)\}$.
Let $\mathcal{R}$ be either $\mathcal{A}_n$ or $\mathcal{K}_n$. Consider a linear system $\sum\limits_{1\leqq l\leqq s}u_{k,l}V_l=w_k$, $1\leqq k\leqq m$, where $u_{k,l}, w_k\in\mathcal{R}$. Assume that $\mathrm{deg}(u_{k,l}),\mathrm{deg}(w_k)<d$. The main theorem of the paper states that provided the system is solvable over $\mathcal{R}$, it has a solution $V_1,\dots,V_s\in\mathcal{R}$ such that $\mathrm{deg}(V_l)\leqq(md)^{2^{O(n)}}$, $1\leqq l\leqq s$.
Remark that for the case of the ring of polynomials $\mathcal{R}=F[X_1,\dots,X_n]$ the bound in lemma was well known [11], but one cannot generalize the proof directly, since the rings $\mathcal{A}_n$, $\mathcal{K}_n$ are noncommutative.
We say that $m\times m$ matrix $B$ (over $\mathcal{A}_n$) is left quasi-inverse to $m\times m$ matrix $C$ (over $\mathcal{A}_n$) if $BC$ has a diagonal form with nonzero diagonal entries. In this case we call $B$ (and also $C$) nonsingular matrix. For a matrix (over $\mathcal{A}_n$) we define its rank as the maximal size of its nonsingular submatrices. Denote by $\mathcal{D}_n$ the skew-field of quotients of $\mathcal{A}_n$ (see [6]). The core of the construction is the following lemma. For $m\times s$ matrix $(u_{k,l})$ over $\mathcal{A}_n$ of the rank $r$ there is $m\times m$ nonsingular matrix $A$ over $\mathcal{D}_n$ and $s\times s$ permuting matrix $P$ such that the matrix $A(u_{k,l})P$ has a trapezium shape with nonzero rows, moreover $\mathrm{deg}(A(u_{k,l})P)\leqq O(nmd)$.
Furthermore, we need a kind of the normalization lemma for the ring $\mathcal{A}_n$. Since the group of linear transformations of $\mathcal{A}_n$, coincides with the symplectic group $S_{P_{2n}}$, the normalization lemma follows from the transitivity of $S_{P_{2n}}$. Ihe main theorem is proved by induction on $n$. For the ring $\mathcal{K}_n$ the proof of the main theorem proceeds in a similar way, even easier, since the group of linear transformations of $\mathcal{K}_n$, is isomorphic to $GL_n$.
English version:
Journal of Mathematical Sciences, 1994, Volume 70, Issue 4, Pages 1873–1880
DOI: https://doi.org/10.1007/BF02112427
Bibliographic databases:
Document Type: Article
UDC: 518.5+512.46
Language: Russian
Citation: D. Yu. Grigor'ev, “Complexity of solving linears systems in the rings of differential operators”, Computational complexity theory. Part 5, Zap. Nauchn. Sem. LOMI, 192, Nauka, Leningrad, 1991, 47–60; J. Math. Sci., 70:4 (1994), 1873–1880
Citation in format AMSBIB
\Bibitem{Gri91}
\by D.~Yu.~Grigor'ev
\paper Complexity of solving linears systems in the rings of differential operators
\inbook Computational complexity theory. Part~5
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 192
\pages 47--60
\publ Nauka
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1118832}
\zmath{https://zbmath.org/?q=an:0835.65076}
\transl
\jour J. Math. Sci.
\yr 1994
\vol 70
\issue 4
\pages 1873--1880
\crossref{https://doi.org/10.1007/BF02112427}
Linking options:
  • https://www.mathnet.ru/eng/znsl4945
  • https://www.mathnet.ru/eng/znsl/v192/p47
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024