|
Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 192, Pages 3–46
(Mi znsl4944)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Finding connected components of a semialgebraic set in subexponential time
N. N. Vorobjov (jr.), D. Yu. Grigor'ev
Abstract:
A subexponential-time algorithm is described, which finds
the connected components of a semialgebraic set $\{\Xi\}\subset(\widetilde{\mathbb{Q}}_m)^n$,
given by a quantifier-free formula $\Xi$ of the first-order theory
of real closed fields . Here $\widetilde{\mathbb{Q}}_m$ is a real closure of the
field $\mathbb{Q}_m=\mathbb{Q}(\delta_1,\dots,\delta_m)\supset\mathbb{Z}_m=\mathbb{Z}[\delta_1,\dots,\delta_m]$,
$\mathbb{Q}_0=\mathbb{Q}$ and for each $1\leqq i\leqq m$ the element $\delta_i>0$ is infinitesimal
relative to $\mathbb{Q}_{i-1}$. The well-known construction of the cylindrical
algebraic decomposition (see [4, 5]) allows to find the
connected components within exponential time.
Let the formula $\Xi$ contain $k$ atomic subformulas of the
form $f_i\geqq0$, $1\leqq i\leqq k$, where $f_i\in\mathbb{Z}_m[X_1,\dots,X_n]$, the absolute
values of integer coefficients of $f_i$ do not exceed $M$,
the degrees $\mathrm{deg}_{X_1,\dots,X_n}(f_i)<d$, $\mathrm{deg}_{\delta_1,\dots,\delta_m}(f_i)<d_0$
for some integers $M$, $d$, $d_0$.
THEOREM. One can design an algorithm, which for $\Xi$ finds
the connected components of the semialgebraic set $\{\Xi\}$ within
time $M^{O(1)}(kd)^{n^{O(1)}(m+1)}d_0^{\,O(n+m)}$. The algorithm outputs
each connected component by means of a certain quantifier-free
formula $\Xi_i$, with $(kd)^{n^{O(1)}}$ atomic subformulas of the type
$g\geqq0$, where the absolute values of integer coefficients of
$g\in\mathbb{Z}_m[X_1,\dots,X_n]$ do not exceed $(M+md_0)(kd)^{n^{O(1)}}$
and the degrees $\mathrm{deg}_{X_1,\dots,X_n}(g)<(kd)^{n^{O(1)}}$,
$\mathrm{deg}_{\delta_1,\dots,\delta_m}(g)<d_0(kd)^{n^{O(1)}}$.
The proof of the theorem essentially involves the designed
in [15] algorithm, which counts the number of connected components
of $\{\Xi\}$ subexponential time and, moreover, allows for any
two points of $\{\Xi\}$ to decide whether they are situated in the
same connected component.
Citation:
N. N. Vorobjov (jr.), D. Yu. Grigor'ev, “Finding connected components of a semialgebraic set in subexponential time”, Computational complexity theory. Part 5, Zap. Nauchn. Sem. LOMI, 192, Nauka, Leningrad, 1991, 3–46; J. Math. Sci., 70:4 (1994), 1847–1872
Linking options:
https://www.mathnet.ru/eng/znsl4944 https://www.mathnet.ru/eng/znsl/v192/p3
|
Statistics & downloads: |
Abstract page: | 143 | Full-text PDF : | 60 |
|