Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 192, Pages 3–46 (Mi znsl4944)  

This article is cited in 1 scientific paper (total in 1 paper)

Finding connected components of a semialgebraic set in subexponential time

N. N. Vorobjov (jr.), D. Yu. Grigor'ev
Abstract: A subexponential-time algorithm is described, which finds the connected components of a semialgebraic set $\{\Xi\}\subset(\widetilde{\mathbb{Q}}_m)^n$, given by a quantifier-free formula $\Xi$ of the first-order theory of real closed fields . Here $\widetilde{\mathbb{Q}}_m$ is a real closure of the field $\mathbb{Q}_m=\mathbb{Q}(\delta_1,\dots,\delta_m)\supset\mathbb{Z}_m=\mathbb{Z}[\delta_1,\dots,\delta_m]$, $\mathbb{Q}_0=\mathbb{Q}$ and for each $1\leqq i\leqq m$ the element $\delta_i>0$ is infinitesimal relative to $\mathbb{Q}_{i-1}$. The well-known construction of the cylindrical algebraic decomposition (see [4, 5]) allows to find the connected components within exponential time.
Let the formula $\Xi$ contain $k$ atomic subformulas of the form $f_i\geqq0$, $1\leqq i\leqq k$, where $f_i\in\mathbb{Z}_m[X_1,\dots,X_n]$, the absolute values of integer coefficients of $f_i$ do not exceed $M$, the degrees $\mathrm{deg}_{X_1,\dots,X_n}(f_i)<d$, $\mathrm{deg}_{\delta_1,\dots,\delta_m}(f_i)<d_0$ for some integers $M$, $d$, $d_0$.
THEOREM. One can design an algorithm, which for $\Xi$ finds the connected components of the semialgebraic set $\{\Xi\}$ within time $M^{O(1)}(kd)^{n^{O(1)}(m+1)}d_0^{\,O(n+m)}$. The algorithm outputs each connected component by means of a certain quantifier-free formula $\Xi_i$, with $(kd)^{n^{O(1)}}$ atomic subformulas of the type $g\geqq0$, where the absolute values of integer coefficients of $g\in\mathbb{Z}_m[X_1,\dots,X_n]$ do not exceed $(M+md_0)(kd)^{n^{O(1)}}$ and the degrees $\mathrm{deg}_{X_1,\dots,X_n}(g)<(kd)^{n^{O(1)}}$, $\mathrm{deg}_{\delta_1,\dots,\delta_m}(g)<d_0(kd)^{n^{O(1)}}$.
The proof of the theorem essentially involves the designed in [15] algorithm, which counts the number of connected components of $\{\Xi\}$ subexponential time and, moreover, allows for any two points of $\{\Xi\}$ to decide whether they are situated in the same connected component.
English version:
Journal of Mathematical Sciences, 1994, Volume 70, Issue 4, Pages 1847–1872
DOI: https://doi.org/10.1007/BF02112426
Bibliographic databases:
Document Type: Article
UDC: 518.5
Language: Russian
Citation: N. N. Vorobjov (jr.), D. Yu. Grigor'ev, “Finding connected components of a semialgebraic set in subexponential time”, Computational complexity theory. Part 5, Zap. Nauchn. Sem. LOMI, 192, Nauka, Leningrad, 1991, 3–46; J. Math. Sci., 70:4 (1994), 1847–1872
Citation in format AMSBIB
\Bibitem{VorGri91}
\by N.~N.~Vorobjov (jr.), D.~Yu.~Grigor'ev
\paper Finding connected components of a semialgebraic set in subexponential time
\inbook Computational complexity theory. Part~5
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 192
\pages 3--46
\publ Nauka
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1118831}
\zmath{https://zbmath.org/?q=an:0900.68253}
\transl
\jour J. Math. Sci.
\yr 1994
\vol 70
\issue 4
\pages 1847--1872
\crossref{https://doi.org/10.1007/BF02112426}
Linking options:
  • https://www.mathnet.ru/eng/znsl4944
  • https://www.mathnet.ru/eng/znsl/v192/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024