|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 67–75
(Mi znsl4927)
|
|
|
|
A correction theorem and the dyadic space $H(1,\infty)$
S. V. Kislyakov
Abstract:
It is proved that for every $L^\infty$-function $f$ and positive $\varepsilon$ there is a function $g$ whose partial sums of both Fourier and Walsh–Fourier series are uniformly bounded by $c(\log 1/\varepsilon)\|f\|_\infty$ and that satisfies $\operatorname{mes}\{f\ne g\}<\varepsilon$.
Citation:
S. V. Kislyakov, “A correction theorem and the dyadic space $H(1,\infty)$”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 67–75
Linking options:
https://www.mathnet.ru/eng/znsl4927 https://www.mathnet.ru/eng/znsl/v149/p67
|
Statistics & downloads: |
Abstract page: | 197 | Full-text PDF : | 51 |
|