Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 67–75 (Mi znsl4927)  

A correction theorem and the dyadic space $H(1,\infty)$

S. V. Kislyakov
Abstract: It is proved that for every $L^\infty$-function $f$ and positive $\varepsilon$ there is a function $g$ whose partial sums of both Fourier and Walsh–Fourier series are uniformly bounded by $c(\log 1/\varepsilon)\|f\|_\infty$ and that satisfies $\operatorname{mes}\{f\ne g\}<\varepsilon$.
Bibliographic databases:
Document Type: Article
UDC: 542.62:90
Language: Russian
Citation: S. V. Kislyakov, “A correction theorem and the dyadic space $H(1,\infty)$”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 67–75
Citation in format AMSBIB
\Bibitem{Kis86}
\by S.~V.~Kislyakov
\paper A correction theorem and the dyadic space~$H(1,\infty)$
\inbook Investigations on linear operators and function theory. Part~XV
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 149
\pages 67--75
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4927}
\zmath{https://zbmath.org/?q=an:0592.42018}
Linking options:
  • https://www.mathnet.ru/eng/znsl4927
  • https://www.mathnet.ru/eng/znsl/v149/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024