|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 138, Pages 33–34
(Mi znsl4898)
|
|
|
|
The Hardy estimates in $\mathbb R^n$ and absence of positive eigenvalues for Schrodinger operators with complex potentials
A. F. Vakulenko
Abstract:
Using the following estimit
$$
\int_{\mathbb R^n}|x|^{2p+2}|\Delta\varphi+\varphi|^2\,dx\geqslant C(p)\int_{\mathbb R^n}|x|^{2p}|\varphi|^2\,dx
$$
with $C(p)\to\infty$ as $p\to\infty$, we prove the absence of $L_2$-solution of
$$
\Delta\varphi+v\varphi=\varphi
$$
with $|v(x)|\leqslant C(1+|x|)^{-1-\varepsilon}$.
Citation:
A. F. Vakulenko, “The Hardy estimates in $\mathbb R^n$ and absence of positive eigenvalues for Schrodinger operators with complex potentials”, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Zap. Nauchn. Sem. LOMI, 138, "Nauka", Leningrad. Otdel., Leningrad, 1984, 33–34
Linking options:
https://www.mathnet.ru/eng/znsl4898 https://www.mathnet.ru/eng/znsl/v138/p33
|
Statistics & downloads: |
Abstract page: | 165 | Full-text PDF : | 59 |
|