|
Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 190, Pages 34–80
(Mi znsl4890)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights
G. M. Gubreev
Abstract:
Any Muckenhoupt $A_2$-weight $\omega^2$ on a special curve $\mathcal{\gamma}_\rho$ ($\rho\geqslant1/2$)
generates a function $y_{\rho,\omega}(\lambda,t)$, which coincides with the exponential
$\exp\{i\lambda t\}$ if $\rho=1$, $\omega^2(z)\equiv1$.
In this paper the geometric approach of B. S. Pavlov is used
to obtain criteria for a family of functions $\{y_{\rho,\omega}(\lambda_k,t): \lambda_k\in\Lambda\}$
to be an unconditional basis in the space $L_2(0,\sigma)$.
The analytic machinery of the paper generalizes some results of
M. M. Dzhrbashyan (for a power weight) for the case of an arbitrary
Muckenhoupt $A_2$-weight.
Citation:
G. M. Gubreev, “Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights”, Investigations on linear operators and function theory. Part 19, Zap. Nauchn. Sem. LOMI, 190, Nauka, St. Petersburg, 1991, 34–80; J. Math. Sci., 71:1 (1994), 2192–2221
Linking options:
https://www.mathnet.ru/eng/znsl4890 https://www.mathnet.ru/eng/znsl/v190/p34
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 78 |
|