|
Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 190, Pages 15–33
(Mi znsl4889)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Projections onto $L^p$-spaces of polyanalytic functions
A. V. Vasin
Abstract:
Main result: for an arbitrary bounded simply connected domain $\Omega$
in $\mathbb{C}$ the subspaces $L_{n,m}^p(\Omega)$ of $L^p(\Omega)$ ($1\leqslant p<\infty$)
consisting of $(m,n)$-analytic functions in $\Omega$ is complemented in
$L^p(\Omega)$ (A functions $f$ on $\Omega$ is $(m,n)$-analytic if
$(\partial^{m+n}/\partial\bar{z}^m\partial z^n)f=0$ in $\Omega$).
It implies (due to a result of J. Lindenstrauss and A. Pelozynski) that the space $L_{n,m}^p(\Omega)$ is
linearly homeomorphic to $l^p$.
In the case $m=n=1$ we get the complementedness in $L^p(\Omega)$
of the space of all harmonic $L^p$-functions in $\Omega$ — a result previously
known only for smooth domains.
Citation:
A. V. Vasin, “Projections onto $L^p$-spaces of polyanalytic functions”, Investigations on linear operators and function theory. Part 19, Zap. Nauchn. Sem. LOMI, 190, Nauka, St. Petersburg, 1991, 15–33; J. Math. Sci., 71:1 (1994), 2180–2191
Linking options:
https://www.mathnet.ru/eng/znsl4889 https://www.mathnet.ru/eng/znsl/v190/p15
|
Statistics & downloads: |
Abstract page: | 130 | Full-text PDF : | 49 |
|