Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 186, Pages 87–100 (Mi znsl4849)  

This article is cited in 2 scientific papers (total in 2 papers)

Wood's anomalies in the scattering problem of a plane wave on a smooth periodic boundary

V. V. Zalipaev, M. M. Popov
Full-text PDF (697 kB) Citations (2)
Abstract: The scattering problem of a plane wave on a smooth periodic boundary in short wave approximation and for small grazing angle is considered. In previous our papers the asymptotics of wave field of the problem has been constructed in terms of infinite series of multiple scattering fields and this series has been summed arising an integral equation of Wiener–Hopf type if the latter equation has unique solution. It turns out that uniqueness of the solution of this equation coincides with absence of Wood's anomalies in the scattering problem. The main result of this paper consists in summation of multiple scattering fields when Wood's anomalies arise. To this end we had to choose appropriate solution of the integral equation when spectral parameter $\Omega$ belonged to the spectrum of corresponding operator. This was achieved by a detailed analysis of transition from penumbral wave field to asymptotics of wave field in Fock's region.
English version:
Journal of Mathematical Sciences, 1995, Volume 73, Issue 3, Pages 353–360
DOI: https://doi.org/10.1007/BF02362819
Bibliographic databases:
Document Type: Article
UDC: 517.934
Language: Russian
Citation: V. V. Zalipaev, M. M. Popov, “Wood's anomalies in the scattering problem of a plane wave on a smooth periodic boundary”, Mathematical problems in the theory of wave propagation. Part 20, Zap. Nauchn. Sem. LOMI, 186, Nauka, St. Petersburg, 1990, 87–100; J. Math. Sci., 73:3 (1995), 353–360
Citation in format AMSBIB
\Bibitem{ZalPop90}
\by V.~V.~Zalipaev, M.~M.~Popov
\paper Wood's anomalies in the scattering problem of a plane wave on a smooth periodic boundary
\inbook Mathematical problems in the theory of wave propagation. Part~20
\serial Zap. Nauchn. Sem. LOMI
\yr 1990
\vol 186
\pages 87--100
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1098006}
\zmath{https://zbmath.org/?q=an:0835.35103|0746.35030}
\transl
\jour J. Math. Sci.
\yr 1995
\vol 73
\issue 3
\pages 353--360
\crossref{https://doi.org/10.1007/BF02362819}
Linking options:
  • https://www.mathnet.ru/eng/znsl4849
  • https://www.mathnet.ru/eng/znsl/v186/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024