|
Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 183, Pages 142–154
(Mi znsl4800)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
Minima of decomposable forms of degree $n$ in $n$ variables for $n\geqslant3$
B. F. Skubenko
Abstract:
It is proved the theorem: if for any $X\in\mathbb{Z}^n$ ($X\ne0$) be $|F(x)|\geqslant\mu>0$ for factorable form $F(X)$ of degree $n$ in $n$ variables then $F$ is equal up to a constant to a integral form provided that $n\geqslant3$.
Citation:
B. F. Skubenko, “Minima of decomposable forms of degree $n$ in $n$ variables for $n\geqslant3$”, Modular functions and quadratic forms. Part 1, Zap. Nauchn. Sem. LOMI, 183, "Nauka", Leningrad. Otdel., Leningrad, 1990, 142–154; J. Soviet Math., 62:4 (1992), 2928–2935
Linking options:
https://www.mathnet.ru/eng/znsl4800 https://www.mathnet.ru/eng/znsl/v183/p142
|
Statistics & downloads: |
Abstract page: | 164 | Full-text PDF : | 66 |
|