|
Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 183, Pages 22–48
(Mi znsl4795)
|
|
|
|
The zeta-function of a convolution
A. I. Vinogradov
Abstract:
The zeta function of a convolution $\zeta_k(s)=\sum\limits_{n=1}^\infty\frac{\tau(n)\tau(n+k)}{n^s}$ (it converges absolutely for $\mathrm{Re}\, s>1$) can be extended to a meromorphic function on the entire $s$-plane.
Citation:
A. I. Vinogradov, “The zeta-function of a convolution”, Modular functions and quadratic forms. Part 1, Zap. Nauchn. Sem. LOMI, 183, "Nauka", Leningrad. Otdel., Leningrad, 1990, 22–48; J. Soviet Math., 62:4 (1992), 2845–2864
Linking options:
https://www.mathnet.ru/eng/znsl4795 https://www.mathnet.ru/eng/znsl/v183/p22
|
Statistics & downloads: |
Abstract page: | 120 | Full-text PDF : | 56 |
|