Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 137, Pages 124–188 (Mi znsl4791)  

This article is cited in 27 scientific papers (total in 27 papers)

Polynomial-time factoring of polynomials and finding the compounds of a variety within the aubexponential time

A. L. Chistov
Abstract: Let $F=H(T_1,\dots,T_l)[\eta]$ where either $H=\mathbb Q$or $H$ is a finite field, $T_1,\dots,T_l$ be algebraically independent over $H$, a polynomial $\varphi\in H(T_1,\dots,T_l)[Z]$ be a minimal for $\eta$, denote $q=\operatorname{char}(F)$. Let $L(f)$ be the size of $f\in F[X_0,\dots,X_n]$.
THEOREM 1. One can factor $f$ over $F$ within the polynomial in $L(f), L(\varphi), q$ time.
The theorem expands the result of [4] treating the case of a finite $F$.
Let homogeneous polynomials $f_0,\dots,f_k\in F[X_0,\dots,X_n]$ be given and $\operatorname{deg}_{X_0,\dots,X_n}(f_i)<d$, denote bу $L$ the sise of the system $f_0=\dots=f_k=0$. The variety of common roots in $\mathbb P^n(\bar F)$ of the latter system is decomposable on irreducible compounds $W_\alpha$. A compound $W_\alpha$ is represented further by its general point and by a system of equations whose variety of roots is $W_\alpha$. The following theorem Improves bounds from [4].
THEOREM II. An algorithm is suggested finding all compounds $W_\alpha$ within polynomial in $(Ld^n)^{n+l}$, $q$ time.
Bibliographic databases:
Document Type: Article
UDC: 518.5+512.46
Language: Russian
Citation: A. L. Chistov, “Polynomial-time factoring of polynomials and finding the compounds of a variety within the aubexponential time”, Computational complexity theory. Part II, Zap. Nauchn. Sem. LOMI, 137, "Nauka", Leningrad. Otdel., Leningrad, 1984, 124–188
Citation in format AMSBIB
\Bibitem{Chi84}
\by A.~L.~Chistov
\paper Polynomial-time factoring of polynomials and finding the compounds of a~variety within the aubexponential time
\inbook Computational complexity theory. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 137
\pages 124--188
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=762101}
\zmath{https://zbmath.org/?q=an:0561.12010}
Linking options:
  • https://www.mathnet.ru/eng/znsl4791
  • https://www.mathnet.ru/eng/znsl/v137/p124
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :557
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024