Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 137, Pages 87–98 (Mi znsl4788)  

This article is cited in 1 scientific paper (total in 1 paper)

Upper bounds for lengthening of proofs after cut-elimination

V. P. Orevkov
Full-text PDF (686 kB) Citations (1)
Abstract: Define $2_i^n$ by $2_0^n=n$ and $2_{i+1}^n=2^{2_i^n}$. Let $\mathcal D$ be derivation tree of a sequent $S$ in the Gentzen-style calculus for the classical or intuitionistic first-order logic. The main result of the paper: There is a cut-free proof $\mathcal D'$ of $S$ such that the height of $\mathcal D'$ is less than $2^h_l$, where $h$ is the height of $\mathcal D$ and $l$ is the number of different sequents in $\mathcal D$.
Bibliographic databases:
Document Type: Article
UDC: 510.66
Language: Russian
Citation: V. P. Orevkov, “Upper bounds for lengthening of proofs after cut-elimination”, Computational complexity theory. Part II, Zap. Nauchn. Sem. LOMI, 137, "Nauka", Leningrad. Otdel., Leningrad, 1984, 87–98
Citation in format AMSBIB
\Bibitem{Ore84}
\by V.~P.~Orevkov
\paper Upper bounds for lengthening of proofs after cut-elimination
\inbook Computational complexity theory. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 137
\pages 87--98
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=762098}
\zmath{https://zbmath.org/?q=an:0562.03027}
Linking options:
  • https://www.mathnet.ru/eng/znsl4788
  • https://www.mathnet.ru/eng/znsl/v137/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024