|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 135, Pages 120–134
(Mi znsl4763)
|
|
|
|
On uniformly smooth renormings of uniformly convex Banach spaces
S. A. Rakov
Abstract:
The paper deals with a quantitative aspect of the well-known Enflo-Pisier theorem on the existence of uniformly smooth renormings of superreflexive (in particular, uniformly convex and uniformly non-square) Banach spaces.
A typical result: Let the modulus of continuity of a Banach space $X$ with a local unconditional structure satisfy the inequality $\delta_X(\varepsilon)\geqslant c\cdot\varepsilon P$. Then $X$ admits an equivalent $q$-smooth renorming for any $q$ satisfying
$$
q<\log2/\log[2(1-c\cdot2^{-p/2})].
$$
Citation:
S. A. Rakov, “On uniformly smooth renormings of uniformly convex Banach spaces”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, "Nauka", Leningrad. Otdel., Leningrad, 1984, 120–134
Linking options:
https://www.mathnet.ru/eng/znsl4763 https://www.mathnet.ru/eng/znsl/v135/p120
|
Statistics & downloads: |
Abstract page: | 109 | Full-text PDF : | 42 |
|