|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 135, Pages 113–119
(Mi znsl4762)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Hankel Schur multipliers and multipliers of $H^1$
V. V. Peller
Abstract:
Let $V^2$ be the space of matrices $\alpha=\{\alpha_{mk}\}_{m,k\geqslant0}$ such that $\sup_N\|P_N\alpha\|_{l^\infty\hat\otimes l^\infty}\leqslant\mathrm {const}$, where
\begin{gather*}
(P_N\alpha)_{mk}=\begin{cases}
\alpha_{mk},\quad m, k\leqslant N\\
0,\quad\text{otherwise.}
\end{cases}
\end{gather*}
The papers concerns Hankel matrices (i. e. matrices $\Gamma_F=\{\hat F(m+k)_{m,k\geqslant0}\}$) in $V^2$. The following assertion is the main result of the paper.
Let $s_{j+1}/s_j\geqslant q>1$, $\{F_j\}_{j\geqslant1}$ be a sequence of polynomials whose Fourier coeeficients are supported on $[s_j, s_{j+1})$. If there exists a positive function $\omega$ on $\mathbb T$ such that $1/\omega\in L^1$ and $\sup_j\int_{\mathbb T}|F_j|^2\omega\,dm<\infty$ then $\Gamma_F\in V^2$.
As a corollary it is proved that under the above hypothesis $F$ is a multiplier of $H^1$, i. e.
$$
\varphi\in H^1\Rightarrow\varphi*F=\sum_{n\geqslant0}\hat\varphi(n)\hat F(n)z^n\in H^1.
$$
Citation:
V. V. Peller, “Hankel Schur multipliers and multipliers of $H^1$”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, "Nauka", Leningrad. Otdel., Leningrad, 1984, 113–119
Linking options:
https://www.mathnet.ru/eng/znsl4762 https://www.mathnet.ru/eng/znsl/v135/p113
|
Statistics & downloads: |
Abstract page: | 128 | Full-text PDF : | 43 |
|