Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 135, Pages 113–119 (Mi znsl4762)  

This article is cited in 1 scientific paper (total in 1 paper)

Hankel Schur multipliers and multipliers of $H^1$

V. V. Peller
Full-text PDF (320 kB) Citations (1)
Abstract: Let $V^2$ be the space of matrices $\alpha=\{\alpha_{mk}\}_{m,k\geqslant0}$ such that $\sup_N\|P_N\alpha\|_{l^\infty\hat\otimes l^\infty}\leqslant\mathrm {const}$, where
\begin{gather*} (P_N\alpha)_{mk}=\begin{cases} \alpha_{mk},\quad m, k\leqslant N\\ 0,\quad\text{otherwise.} \end{cases} \end{gather*}
The papers concerns Hankel matrices (i. e. matrices $\Gamma_F=\{\hat F(m+k)_{m,k\geqslant0}\}$) in $V^2$. The following assertion is the main result of the paper.
Let $s_{j+1}/s_j\geqslant q>1$, $\{F_j\}_{j\geqslant1}$ be a sequence of polynomials whose Fourier coeeficients are supported on $[s_j, s_{j+1})$. If there exists a positive function $\omega$ on $\mathbb T$ such that $1/\omega\in L^1$ and $\sup_j\int_{\mathbb T}|F_j|^2\omega\,dm<\infty$ then $\Gamma_F\in V^2$.
As a corollary it is proved that under the above hypothesis $F$ is a multiplier of $H^1$, i. e.
$$ \varphi\in H^1\Rightarrow\varphi*F=\sum_{n\geqslant0}\hat\varphi(n)\hat F(n)z^n\in H^1. $$
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. V. Peller, “Hankel Schur multipliers and multipliers of $H^1$”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, "Nauka", Leningrad. Otdel., Leningrad, 1984, 113–119
Citation in format AMSBIB
\Bibitem{Pel84}
\by V.~V.~Peller
\paper Hankel Schur multipliers and multipliers of~$H^1$
\inbook Investigations on linear operators and function theory. Part~XIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 135
\pages 113--119
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4762}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=741701}
\zmath{https://zbmath.org/?q=an:0561.47023}
Linking options:
  • https://www.mathnet.ru/eng/znsl4762
  • https://www.mathnet.ru/eng/znsl/v135/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024