|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 134, Pages 232–251
(Mi znsl4751)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Rational trigonometric sums along a curve
S. A. Stepanov
Abstract:
Under certain assumptions on the polynomials $f(x, y)$ and $g(x, y)$ the following estimate
$$
\left|\sum_{\substack{x,y=1\\ f(x,y)\equiv0\pmod q}}e^\frac{2\pi ig(x, y)}q\right|\ll q^{1-\frac1{N+1}+\varepsilon},\quad\varepsilon>0
$$
is proved. There $N$ is the maximum over all $p|q$ of the intersection index of the curves $f(x, y)\equiv0\pmod p$ and $\frac{\partial f}{\partial y}\frac{\partial g}{\partial x}-\frac{\partial g}{\partial y}\frac{\partial f}{\partial x}\equiv0\pmod p$ in the finite field of $p$ elements.
Citation:
S. A. Stepanov, “Rational trigonometric sums along a curve”, Automorphic functions and number theory. Part II, Zap. Nauchn. Sem. LOMI, 134, "Nauka", Leningrad. Otdel., Leningrad, 1984, 232–251
Linking options:
https://www.mathnet.ru/eng/znsl4751 https://www.mathnet.ru/eng/znsl/v134/p232
|
|