Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 134, Pages 226–231 (Mi znsl4750)  

On the generalized Roth–Schmidt theorem

B. F. Skubenko
Full-text PDF (280 kB) Citations (1)
Abstract: It is proved that the inequality
$$ \prod_{i=1}^{n-1}\|q\theta_i\|<c(qf(q))^{-1}, $$
where $c$ is a fixed constant, $f(q)>\log q$ and $\theta_1,\dots,\theta_{n-1}$ belong to a totally real algebraic number field of degree $n$ can be solved for arbitrary large $q$. For $n=3$ necessary and sufficient conditions are given in order that $f(q)=O(\log q)$.
Bibliographic databases:
Document Type: Article
UDC: 511.9
Language: Russian
Citation: B. F. Skubenko, “On the generalized Roth–Schmidt theorem”, Automorphic functions and number theory. Part II, Zap. Nauchn. Sem. LOMI, 134, "Nauka", Leningrad. Otdel., Leningrad, 1984, 226–231
Citation in format AMSBIB
\Bibitem{Sku84}
\by B.~F.~Skubenko
\paper On the generalized Roth--Schmidt theorem
\inbook Automorphic functions and number theory. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 134
\pages 226--231
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=741862}
\zmath{https://zbmath.org/?q=an:0535.10038}
Linking options:
  • https://www.mathnet.ru/eng/znsl4750
  • https://www.mathnet.ru/eng/znsl/v134/p226
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024