|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 134, Pages 226–231
(Mi znsl4750)
|
|
|
|
On the generalized Roth–Schmidt theorem
B. F. Skubenko
Abstract:
It is proved that the inequality
$$
\prod_{i=1}^{n-1}\|q\theta_i\|<c(qf(q))^{-1},
$$
where $c$ is a fixed constant, $f(q)>\log q$ and $\theta_1,\dots,\theta_{n-1}$ belong to a totally real algebraic number field of degree $n$ can be solved for arbitrary large $q$. For $n=3$ necessary and sufficient conditions are given in order that $f(q)=O(\log q)$.
Citation:
B. F. Skubenko, “On the generalized Roth–Schmidt theorem”, Automorphic functions and number theory. Part II, Zap. Nauchn. Sem. LOMI, 134, "Nauka", Leningrad. Otdel., Leningrad, 1984, 226–231
Linking options:
https://www.mathnet.ru/eng/znsl4750 https://www.mathnet.ru/eng/znsl/v134/p226
|
Statistics & downloads: |
Abstract page: | 134 | Full-text PDF : | 54 |
|