Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 240, Pages 229–244 (Mi znsl475)  

This article is cited in 21 scientific papers (total in 21 papers)

On the representation theory of wreath products of finite group and symmetric group

I. A. Pushkarev

Saint-Petersburg State University
Abstract: Let GSN be the wreath product of a finite group G and the symmetric group SN. The aim of this paper is to prove the branching theorem for the increasing sequence of finite groups GS1GS2GSN and the analog of Young's orthogonal form for this case, using the inductive approach, invented by A. Vershik and A. Okounkov for the case of symmetric group.
Received: 02.09.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 96, Issue 5, Pages 3590–3599
DOI: https://doi.org/10.1007/BF02175835
Bibliographic databases:
UDC: 512.547.212
Language: Russian
Citation: I. A. Pushkarev, “On the representation theory of wreath products of finite group and symmetric group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 229–244; J. Math. Sci. (New York), 96:5 (1999), 3590–3599
Citation in format AMSBIB
\Bibitem{Pus97}
\by I.~A.~Pushkarev
\paper On the representation theory of wreath products of finite group and symmetric group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 229--244
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691647}
\zmath{https://zbmath.org/?q=an:0959.20015}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3590--3599
\crossref{https://doi.org/10.1007/BF02175835}
Linking options:
  • https://www.mathnet.ru/eng/znsl475
  • https://www.mathnet.ru/eng/znsl/v240/p229
  • This publication is cited in the following 21 articles:
    1. Elena Pascucci, “Some characterizations of fundamental graded algebras”, Journal of Algebra, 2024  crossref
    2. Christopher Ryba, “Stable centres of wreath products”, Algebraic Combinatorics, 6:2 (2023), 413  crossref
    3. Subhajit Ghosh, “Total variation cutoff for the flip-transpose top with random shuffle”, ALEA, 18:1 (2021), 985  crossref
    4. Mahir Bilen Can, Yiyang She, Liron Speyer, “Strong Gelfand subgroups of F ≀ Sn”, Int. J. Math., 32:02 (2021), 2150010  crossref
    5. Savage A., “Affine Wreath Product Algebras”, Int. Math. Res. Notices, 2020:10 (2020), 2977–3041  crossref  isi
    6. Ashish Mishra, Shraddha Srivastava, “On representation theory of partition algebras for complex reflection groups”, Algebraic Combinatorics, 3:2 (2020), 389  crossref
    7. Tomasz Przeździecki, “The combinatorics ofC⁎-fixed points in generalized Calogero-Moser spaces and Hilbert schemes”, Journal of Algebra, 556 (2020), 936  crossref
    8. Webster B., “Representation Theory of the Cyclotomic Cherednik Algebra Via the Dunkl-Opdam Subalgebra”, N. Y. J. Math., 25 (2019), 1017–1047  isi
    9. Stein I., “The Littlewood-Richardson rule for wreath products with symmetric groups and the quiver of the category F ? FI _{ n }”, Commun. Algebr., 45:5 (2017), 2105–2126  crossref  mathscinet  zmath  isi  scopus
    10. Gwyn Bellamy, Ulrich Thiel, “Cuspidal Calogero–Moser and Lusztig families for Coxeter groups”, Journal of Algebra, 462 (2016), 197  crossref
    11. Ashish Mishra, Murali K. Srinivasan, “The Okounkov–Vershik approach to the representation theory of $G\sim S_n$ G ∼ S n”, J Algebr Comb, 44:3 (2016), 519  crossref
    12. Martino M., “Blocks of Restricted Rational Cherednik Algebras For G(M, D, N)”, J. Algebra, 397 (2014), 209–224  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. O. Ogievetsky, L. Poulain d'Andecy, “Fusion procedure for Coxeter groups of type 𝐵 and complex reflection groups 𝐺(𝑚,1,𝑛)”, Proc. Amer. Math. Soc., 142:9 (2014), 2929  crossref
    14. L. Poulain d'Andecy, “Fusion Procedure for Wreath Products of Finite Groups by the Symmetric Group”, Algebr Represent Theor, 17:3 (2014), 809  crossref
    15. O. V. Ogievetskii, L. Poulain d'Andecy, “An inductive approach to representations of complex reflection groups $G(m,1,n)$”, Theoret. and Math. Phys., 174:1 (2013), 95–108  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. Wan J., “Wreath Hecke algebras and centralizer construction for wreath products”, Journal of Algebra, 323:9 (2010), 2371–2397  crossref  mathscinet  zmath  isi  scopus
    17. Wan J., Wang W., “Modular Representations and Branching Rules for Wreath Hecke Algebras”, International Mathematics Research Notices, 2008, rnn128  mathscinet  zmath  isi  elib
    18. Jinkui Wan, Weiqiang Wang, “Modular Representations and Branching Rules for Wreath Hecke Algebras”, International Mathematics Research Notices, 2008 (2008)  crossref
    19. Adin R.M., Brenti F., Roichman Yu., “A construction of Coxeter group representations (II)”, J Algebra, 306:1 (2006), 208–226  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    20. A. M. Vershik, A. Yu. Okounkov, “A new approach to the representation theory of the symmetric groups. II”, J. Math. Sci. (N. Y.), 131:2 (2005), 5471–5494  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:533
    Full-text PDF :227
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025