Abstract:
Let G≀SN be the wreath product of a finite group G and the symmetric group SN. The aim of this paper is to prove the branching theorem for the increasing sequence of finite groups G≀S1⊂G≀S2⊂⋯⊂G≀SN⊂… and the analog of Young's orthogonal form for this case, using the inductive approach, invented by A. Vershik and A. Okounkov for the case of symmetric group.
Citation:
I. A. Pushkarev, “On the representation theory of wreath products of finite group and symmetric group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 229–244; J. Math. Sci. (New York), 96:5 (1999), 3590–3599
\Bibitem{Pus97}
\by I.~A.~Pushkarev
\paper On the representation theory of wreath products of finite group and symmetric group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 229--244
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691647}
\zmath{https://zbmath.org/?q=an:0959.20015}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3590--3599
\crossref{https://doi.org/10.1007/BF02175835}
Linking options:
https://www.mathnet.ru/eng/znsl475
https://www.mathnet.ru/eng/znsl/v240/p229
This publication is cited in the following 21 articles:
Elena Pascucci, “Some characterizations of fundamental graded algebras”, Journal of Algebra, 2024
Christopher Ryba, “Stable centres of wreath products”, Algebraic Combinatorics, 6:2 (2023), 413
Subhajit Ghosh, “Total variation cutoff for the flip-transpose top with random shuffle”, ALEA, 18:1 (2021), 985
Mahir Bilen Can, Yiyang She, Liron Speyer, “Strong Gelfand subgroups of F ≀ Sn”, Int. J. Math., 32:02 (2021), 2150010
Savage A., “Affine Wreath Product Algebras”, Int. Math. Res. Notices, 2020:10 (2020), 2977–3041
Ashish Mishra, Shraddha Srivastava, “On representation theory of partition algebras for complex reflection groups”, Algebraic Combinatorics, 3:2 (2020), 389
Tomasz Przeździecki, “The combinatorics ofC⁎-fixed points in generalized Calogero-Moser spaces and Hilbert schemes”, Journal of Algebra, 556 (2020), 936
Webster B., “Representation Theory of the Cyclotomic Cherednik Algebra Via the Dunkl-Opdam Subalgebra”, N. Y. J. Math., 25 (2019), 1017–1047
Stein I., “The Littlewood-Richardson rule for wreath products with symmetric groups and the quiver of the category F ? FI _{ n }”, Commun. Algebr., 45:5 (2017), 2105–2126
Gwyn Bellamy, Ulrich Thiel, “Cuspidal Calogero–Moser and Lusztig families for Coxeter groups”, Journal of Algebra, 462 (2016), 197
Ashish Mishra, Murali K. Srinivasan, “The Okounkov–Vershik approach to the representation theory of $G\sim S_n$ G ∼ S n”, J Algebr Comb, 44:3 (2016), 519
Martino M., “Blocks of Restricted Rational Cherednik Algebras For G(M, D, N)”, J. Algebra, 397 (2014), 209–224
O. Ogievetsky, L. Poulain d'Andecy, “Fusion procedure for Coxeter groups of type 𝐵 and complex reflection groups 𝐺(𝑚,1,𝑛)”, Proc. Amer. Math. Soc., 142:9 (2014), 2929
L. Poulain d'Andecy, “Fusion Procedure for Wreath Products of Finite Groups by the Symmetric Group”, Algebr Represent Theor, 17:3 (2014), 809
O. V. Ogievetskii, L. Poulain d'Andecy, “An inductive approach to representations of complex reflection groups
$G(m,1,n)$”, Theoret. and Math. Phys., 174:1 (2013), 95–108
Wan J., “Wreath Hecke algebras and centralizer construction for wreath products”, Journal of Algebra, 323:9 (2010), 2371–2397
Wan J., Wang W., “Modular Representations and Branching Rules for Wreath Hecke Algebras”, International Mathematics Research Notices, 2008, rnn128
Jinkui Wan, Weiqiang Wang, “Modular Representations and Branching Rules for Wreath Hecke Algebras”, International Mathematics Research Notices, 2008 (2008)
Adin R.M., Brenti F., Roichman Yu., “A construction of Coxeter group representations (II)”, J Algebra, 306:1 (2006), 208–226
A. M. Vershik, A. Yu. Okounkov, “A new approach to the representation theory of the symmetric groups. II”, J. Math. Sci. (N. Y.), 131:2 (2005), 5471–5494