|
Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 182, Pages 86–101
(Mi znsl4735)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications
A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev
Abstract:
Global solvability on the semiaxis $t\geqslant0$ initial value problems for equations of motion of linear viscoelastic fluids with following external forse $f(x,t):f,f_t\in L_\infty(\mathrm{R}^+;L_2(\Omega))$ is investigated. Existence time periodicity of “small” smooth stable solutions of equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids with “small” time periodicity external forse $f$ is proved.
Citation:
A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev, “Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications”, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Zap. Nauchn. Sem. LOMI, 182, "Nauka", Leningrad. Otdel., Leningrad, 1990, 86–101; J. Soviet Math., 62:3 (1992), 2777–2788
Linking options:
https://www.mathnet.ru/eng/znsl4735 https://www.mathnet.ru/eng/znsl/v182/p86
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 53 |
|