Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 182, Pages 86–101 (Mi znsl4735)  

This article is cited in 2 scientific papers (total in 2 papers)

Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications

A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev
Full-text PDF (770 kB) Citations (2)
Abstract: Global solvability on the semiaxis $t\geqslant0$ initial value problems for equations of motion of linear viscoelastic fluids with following external forse $f(x,t):f,f_t\in L_\infty(\mathrm{R}^+;L_2(\Omega))$ is investigated. Existence time periodicity of “small” smooth stable solutions of equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids with “small” time periodicity external forse $f$ is proved.
English version:
Journal of Soviet Mathematics, 1992, Volume 62, Issue 3, Pages 2777–2788
DOI: https://doi.org/10.1007/BF01671001
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev, “Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications”, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Zap. Nauchn. Sem. LOMI, 182, "Nauka", Leningrad. Otdel., Leningrad, 1990, 86–101; J. Soviet Math., 62:3 (1992), 2777–2788
Citation in format AMSBIB
\Bibitem{CotOskSha90}
\by A.~A.~Kotsiolis, A.~P.~Oskolkov, R.~D.~Shadiev
\paper Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~21
\serial Zap. Nauchn. Sem. LOMI
\yr 1990
\vol 182
\pages 86--101
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1064098}
\zmath{https://zbmath.org/?q=an:0723.76011}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 62
\issue 3
\pages 2777--2788
\crossref{https://doi.org/10.1007/BF01671001}
Linking options:
  • https://www.mathnet.ru/eng/znsl4735
  • https://www.mathnet.ru/eng/znsl/v182/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024