|
Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 182, Pages 38–85
(Mi znsl4734)
|
|
|
|
This article is cited in 19 scientific papers (total in 19 papers)
The Cauchy problem for a semilinear wave equation. II
L. V. Kapitanskii
Abstract:
The Cauchy problem for a semilinear hyperbolic equation of the form
$$
\frac{\partial^2}{\partial t^2}u(t,x)+iB(t)\frac\partial{\partial t}u(t,x)+A(t)u(t,x)+f(t,x;u(t,x))=0\qquad{(1)}
$$
is studied. In (1): $x$ runs through a smooth Riemannian manifold
$\mathfrak{M}$ without boundary, $\mathrm{dim}\,\mathfrak{M}=n\geqslant3$, $A(t)$ and $B(t)$
are time-dependent pseudodifferential operators (on $\mathfrak{M}$) of
order 2 and $\leqslant1$, resp., with real principal symbols $a_2(t,x,\xi)$
and $b_1(t,x,\xi)$, and $a_2(t,x,\xi)\geqslant\nu|\xi|^2$, $\nu>0$, all $t$ and
$(x,\xi)\in T^*\mathfrak{M}\setminus0$. Under certain assumptions on the nonlinearity $f$
which, in the special case of differential operators $A(t)$ and $B(t)$
and $f(t,x;z)=\lambda|z|^{\rho-1}z$, reduce to $\lambda\geqslant0$
and $1\leqslant\rho\leqslant(n+2)/(n-2)$ (the critical value $\rho=(n+2)/(n-2)$ is allowed.),
we prove that for arbitrary initial data
$$
u(0)=\varphi\in H^1,\quad \frac\partial{\partial t}u(0)=\psi\in L_2\qquad{(2)}
$$
there exists and is unique the global in $t$ weak solution $u$
of the problem (1), (2).
Citation:
L. V. Kapitanskii, “The Cauchy problem for a semilinear wave equation. II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Zap. Nauchn. Sem. LOMI, 182, "Nauka", Leningrad. Otdel., Leningrad, 1990, 38–85; J. Soviet Math., 62:3 (1992), 2746–2777
Linking options:
https://www.mathnet.ru/eng/znsl4734 https://www.mathnet.ru/eng/znsl/v182/p38
|
Statistics & downloads: |
Abstract page: | 163 | Full-text PDF : | 93 |
|