Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 182, Pages 38–85 (Mi znsl4734)  

This article is cited in 19 scientific papers (total in 19 papers)

The Cauchy problem for a semilinear wave equation. II

L. V. Kapitanskii
Abstract: The Cauchy problem for a semilinear hyperbolic equation of the form
$$ \frac{\partial^2}{\partial t^2}u(t,x)+iB(t)\frac\partial{\partial t}u(t,x)+A(t)u(t,x)+f(t,x;u(t,x))=0\qquad{(1)} $$
is studied. In (1): $x$ runs through a smooth Riemannian manifold $\mathfrak{M}$ without boundary, $\mathrm{dim}\,\mathfrak{M}=n\geqslant3$, $A(t)$ and $B(t)$ are time-dependent pseudodifferential operators (on $\mathfrak{M}$) of order 2 and $\leqslant1$, resp., with real principal symbols $a_2(t,x,\xi)$ and $b_1(t,x,\xi)$, and $a_2(t,x,\xi)\geqslant\nu|\xi|^2$, $\nu>0$, all $t$ and $(x,\xi)\in T^*\mathfrak{M}\setminus0$. Under certain assumptions on the nonlinearity $f$ which, in the special case of differential operators $A(t)$ and $B(t)$ and $f(t,x;z)=\lambda|z|^{\rho-1}z$, reduce to $\lambda\geqslant0$ and $1\leqslant\rho\leqslant(n+2)/(n-2)$ (the critical value $\rho=(n+2)/(n-2)$ is allowed.), we prove that for arbitrary initial data
$$ u(0)=\varphi\in H^1,\quad \frac\partial{\partial t}u(0)=\psi\in L_2\qquad{(2)} $$
there exists and is unique the global in $t$ weak solution $u$ of the problem (1), (2).
English version:
Journal of Soviet Mathematics, 1992, Volume 62, Issue 3, Pages 2746–2777
DOI: https://doi.org/10.1007/BF01671000
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: L. V. Kapitanskii, “The Cauchy problem for a semilinear wave equation. II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Zap. Nauchn. Sem. LOMI, 182, "Nauka", Leningrad. Otdel., Leningrad, 1990, 38–85; J. Soviet Math., 62:3 (1992), 2746–2777
Citation in format AMSBIB
\Bibitem{Kap90}
\by L.~V.~Kapitanskii
\paper The Cauchy problem for a semilinear wave equation. II
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~21
\serial Zap. Nauchn. Sem. LOMI
\yr 1990
\vol 182
\pages 38--85
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1064097}
\zmath{https://zbmath.org/?q=an:0783.35089|0733.35109}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 62
\issue 3
\pages 2746--2777
\crossref{https://doi.org/10.1007/BF01671000}
Linking options:
  • https://www.mathnet.ru/eng/znsl4734
  • https://www.mathnet.ru/eng/znsl/v182/p38
    Cycle of papers
    This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024