|
Zapiski Nauchnykh Seminarov LOMI, 1990, Volume 181, Pages 132–145
(Mi znsl4730)
|
|
|
|
Factor-representations of the infinite spin-symmetric group
M. L. Nazarov
Abstract:
Let $S(\infty)$ be the group of finitary permutations of the sequence of natural numbers. The infinite spin-symmetric group is its central $\mathbb{Z}_2$-extension. This extension linearizes projective representations of the group $S(\infty)$. In this article factor-representations of $\mathrm{II}_1$-type of the group $T(\infty)$ are described.
Citation:
M. L. Nazarov, “Factor-representations of the infinite spin-symmetric group”, Differential geometry, Lie groups and mechanics. Part 11, Zap. Nauchn. Sem. LOMI, 181, "Nauka", Leningrad. Otdel., Leningrad, 1990, 132–145; J. Soviet Math., 62:2 (1992), 2690–2698
Linking options:
https://www.mathnet.ru/eng/znsl4730 https://www.mathnet.ru/eng/znsl/v181/p132
|
Statistics & downloads: |
Abstract page: | 129 | Full-text PDF : | 69 |
|