Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 240, Pages 154–165 (Mi znsl473)  

This article is cited in 9 scientific papers (total in 9 papers)

An estimate from above of spectral radii of random walks on surface groups

T. V. Nagnibeda

University of Geneva
Full-text PDF (193 kB) Citations (9)
Abstract: Using Gabber's Lemma, we get new estimates of the spectral radius of the simple random walk on the fundamental group of the orientable closed surface of genus $g$, $g\ge2$. In order to get better numerical estimates we base our method on Cannon's classification of the group elements by their cone types. The method may as well be applied to many other groups and graphs with finite numbers of cone types.
Received: 20.09.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 96, Issue 5, Pages 3542–3549
DOI: https://doi.org/10.1007/BF02175833
Bibliographic databases:
UDC: 517.4+519.217
Language: Russian
Citation: T. V. Nagnibeda, “An estimate from above of spectral radii of random walks on surface groups”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 154–165; J. Math. Sci. (New York), 96:5 (1999), 3542–3549
Citation in format AMSBIB
\Bibitem{Nag97}
\by T.~V.~Nagnibeda
\paper An estimate from above of spectral radii of random walks on surface groups
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 154--165
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691645}
\zmath{https://zbmath.org/?q=an:0947.60006}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3542--3549
\crossref{https://doi.org/10.1007/BF02175833}
Linking options:
  • https://www.mathnet.ru/eng/znsl473
  • https://www.mathnet.ru/eng/znsl/v240/p154
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024