Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 395, Pages 67–70 (Mi znsl4723)  

Products of orthoprojectors and Hermitian matrices

Kh. D. Ikramov

Moscow State University, Moscow, Russia
References:
Abstract: A proof of the following result is presented: A matrix $A\in M_n(\mathbf C)$ can be represented as a product $A=PH$, where $P$ is an orthoprojector and $H$ is Hermitian, if and only if $A$ satisfies the equation $A^{*2}A=A^*A^2$ (the Radjavi–Williams theorem). Unlike the original proof, ours makes no use of the Crimmins theorem.
Key words and phrases: Hermitian matrices, orthoprojector, image of a matrix.
Received: 25.05.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 6, Pages 782–784
DOI: https://doi.org/10.1007/s10958-012-0784-5
Bibliographic databases:
Document Type: Article
UDC: 512.64
Language: Russian
Citation: Kh. D. Ikramov, “Products of orthoprojectors and Hermitian matrices”, Computational methods and algorithms. Part XXIV, Zap. Nauchn. Sem. POMI, 395, POMI, St. Petersburg, 2011, 67–70; J. Math. Sci. (N. Y.), 182:6 (2012), 782–784
Citation in format AMSBIB
\Bibitem{Ikr11}
\by Kh.~D.~Ikramov
\paper Products of orthoprojectors and Hermitian matrices
\inbook Computational methods and algorithms. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 395
\pages 67--70
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870161}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 182
\issue 6
\pages 782--784
\crossref{https://doi.org/10.1007/s10958-012-0784-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861770942}
Linking options:
  • https://www.mathnet.ru/eng/znsl4723
  • https://www.mathnet.ru/eng/znsl/v395/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :82
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024