Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 178, Pages 166–183 (Mi znsl4682)  

This article is cited in 2 scientific papers (total in 2 papers)

Invariant subspaces of multiplication by $z$ of $E^p$ in a multiply connected domain

D. V. Yakubovich
Full-text PDF (797 kB) Citations (2)
Abstract: Let $G$ be a multiply connected domain with boundary $\Gamma_0\cup\dots\cup\Gamma_s$ where $\Gamma_j$ are closed piecewice $C^2$-smooth curves. A subspace $Z$ in Hardy–Smirnov class $E^p(G)$, $1\leqslant p\leqslant\infty$, is called invariant if $zf(z)\in Z$ for $f\in Z$. Define domains $V_j$ by $\Gamma_j=\partial V_j$, $\mathbb{C}\setminus G=V_0\cup\dots\cup V_s$; suppose that $V_0$ is unbounded. For an invariant subspace $Z$ in $E^p(G)$ the function $\chi_Z\in L^\infty(\Gamma_{int})$, $\Gamma_{int}{\stackrel{def}=}\Gamma_1\cup\dots\cup\Gamma_s$ is defined by the equalities $\mathcal{H}_j{\stackrel{def}=}\mathrm{clos}_{L^P(\Gamma_j)}\{x(\Gamma_j):x\in Z\}=(\overline{\chi}_Z\mid\Gamma_j)\cdot E^p(V_j)$, $|\chi_Z|\equiv1$ a.e. on $\Gamma_j$ for $j\geqslant1$ $(\chi_Z\mid\Gamma_j\equiv0\ if\ \mathcal{H}_j=L^p(\Gamma_j))$.
THEOREM 1. (i) Let $Z$ be an invariant subspace in $E^p(G)$ such that $GCD(Z)=1$. Then
$$ Z=\{x: \varphi\cdot x\in E_0^{1,\infty}(V_j), j\geqslant1\}. $$
Here $\varphi$ is measurable function on $\Gamma_{int}$, $\varphi\equiv0$ or $|\varphi|\geqslant1$, a.e. on each $\Gamma_j: L_0^{1,\infty}(\Gamma_j)=\{f\in L^{1/2}(\Gamma_j): m\{|f|\}>A\}=o(A^{-1})$, $A\to+\infty$ ($m$ is the Lesbegue measure), $E_0^{1,\infty}(V_j)=E^{1/2}(V_j)\cap L_0^{1,\infty}(\Gamma_j)$, and $GCD(Z)$ is common least divisor of inner parts of functions in $Z$.
(ii) If the inequality $d\,\omega_{V_j}\leqslant cd\,\omega_G\mid\Gamma_j$ holds forharmonic measures for $j\geqslant1$, then
$$ Z=\{x: \chi_z x\mid\Gamma_j\in E^p(V_j),\ \rho\cdot x\in L_0^{1,\infty}(\Gamma_{int})\} $$
for a measurable function $\rho$ on $\Gamma_{int}$.
THEOREM 2. Let $\Gamma_j$ be analytic, $\tau_j$ be conformal mappings of $V_j$ onto the unit disk ($j\geqslant1$). Suppose $Z$ is invariant subspace in $E^2(G)$, $GCD(Z)=1$. There еxist outer $g_j\in E^2(V_j)$, inner $\theta_j$ in $V_j$, $m_j\in\mathbb{Z}$ such that $|g_j|^2=\mathrm{Re}\,(\tau_j\theta_j v_j)+1$ a.e. on $\Gamma_j$ for some $v_j\in E_0^{1,\infty}(V_j)$ and
$$ Z=\{x: x\mid\Gamma_j\in(\chi\mid\Gamma_j)E^2(V_j),\ |xg_j^{-1}|\in L^2(\Gamma)\ for\ j\geqslant1\}. $$
Here $\chi\in L^\infty(\Gamma_{int})$ is defined by $\chi\mid\Gamma_j=\tau_j\theta_jg_j/\overline{g}_j$. Conversely, every $g_j$, $\theta_j$, $m_j$ satisfying the above conditions give rise to an invariant subspace $Z$ such that $GCD(Z)=1$ and $\chi_z=\chi$.
This generalizes the results of Hitt and Sarason [5,6].
English version:
Journal of Soviet Mathematics, 1992, Volume 61, Issue 2, Pages 2046–2056
DOI: https://doi.org/10.1007/BF01095669
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: D. V. Yakubovich, “Invariant subspaces of multiplication by $z$ of $E^p$ in a multiply connected domain”, Investigations on linear operators and function theory. Part 18, Zap. Nauchn. Sem. LOMI, 178, "Nauka", Leningrad. Otdel., Leningrad, 1989, 166–183; J. Soviet Math., 61:2 (1992), 2046–2056
Citation in format AMSBIB
\Bibitem{Yak89}
\by D.~V.~Yakubovich
\paper Invariant subspaces of multiplication by $z$ of $E^p$ in a multiply connected domain
\inbook Investigations on linear operators and function theory. Part~18
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 178
\pages 166--183
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1037771}
\zmath{https://zbmath.org/?q=an:0784.47038|0722.47031}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 61
\issue 2
\pages 2046--2056
\crossref{https://doi.org/10.1007/BF01095669}
Linking options:
  • https://www.mathnet.ru/eng/znsl4682
  • https://www.mathnet.ru/eng/znsl/v178/p166
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024