|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 397, Pages 157–171
(Mi znsl4673)
|
|
|
|
On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
M. Fuchsa, G. Zhangb a Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
b University of Jyväskylä, Dept. of Mathematics and Statistics, Jyväskylä, Finland
Abstract:
Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|<\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|<\infty$.
Key words and phrases:
plasticity, logarithmic hardening, deformation theory, entire solutions.
Received: 20.09.2011
Citation:
M. Fuchs, G. Zhang, “On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening”, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Zap. Nauchn. Sem. POMI, 397, POMI, St. Petersburg, 2011, 157–171; J. Math. Sci. (N. Y.), 185:5 (2012), 746–753
Linking options:
https://www.mathnet.ru/eng/znsl4673 https://www.mathnet.ru/eng/znsl/v397/p157
|
Statistics & downloads: |
Abstract page: | 125 | Full-text PDF : | 44 | References: | 41 |
|