Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 397, Pages 157–171 (Mi znsl4673)  

On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening

M. Fuchsa, G. Zhangb

a Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
b University of Jyväskylä, Dept. of Mathematics and Statistics, Jyväskylä, Finland
References:
Abstract: Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|<\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|<\infty$.
Key words and phrases: plasticity, logarithmic hardening, deformation theory, entire solutions.
Received: 20.09.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 5, Pages 746–753
DOI: https://doi.org/10.1007/s10958-012-0958-1
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: M. Fuchs, G. Zhang, “On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening”, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Zap. Nauchn. Sem. POMI, 397, POMI, St. Petersburg, 2011, 157–171; J. Math. Sci. (N. Y.), 185:5 (2012), 746–753
Citation in format AMSBIB
\Bibitem{FucZha11}
\by M.~Fuchs, G.~Zhang
\paper On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 397
\pages 157--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870114}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 5
\pages 746--753
\crossref{https://doi.org/10.1007/s10958-012-0958-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866922089}
Linking options:
  • https://www.mathnet.ru/eng/znsl4673
  • https://www.mathnet.ru/eng/znsl/v397/p157
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :44
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024