Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 397, Pages 115–125 (Mi znsl4670)  

This article is cited in 16 scientific papers (total in 16 papers)

On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$

P. Neff, D. Pauly, K.-J. Witsch

Universität Duisburg-Essen, Fakultät für Mathematik, Essen, Germany
References:
Abstract: We prove a Korn-type inequality in $\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$ for tensor fields $P$ mapping $\Omega$ to $\mathbb R^{3\times3}$. More precisely, let $\Omega\subset\mathbb R^3$ be a bounded domain with connected Lipschitz boundary $\partial\Omega$. Then, there exists a constant $c>0$ such that
\begin{equation} c\|P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\leq\|\operatorname{sym}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} +\|\operatorname{Curl}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} \tag{0.1} \end{equation}
holds for all tensor fields $P\in\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$, i.e., all
$$ P\in\mathsf H(\operatorname{Curl};\Omega,\mathbb R^{3\times3}) $$
with vanishing tangential trace on $\partial\Omega$. Here, rotation and tangential trace are defined row-wise. For compatible $P$ (i.e., $P=\nabla v$), $\operatorname{Curl}P=0$, where $v\in\mathsf H^1(\Omega,\mathbb R^3)$ a vector field having components $v_n$, for which $\nabla v_n$ are normal at $\partial\Omega$, the estimate $(0.1)$ is reduced to a non-standard variant of the Korn's first inequality:
$$ c\|\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\le \|\operatorname{sym}\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}. $$
For skew-symmetric $P$ ($\operatorname{sym}P=0$) the estimate $(0.1)$ generates a non-standard version of the Poincaré. Therefore, the estimateis a generalization of two classical inequalities of Poincaré and Korn.
Key words and phrases: Korn's inequality, gradient plasticity, theory of Maxwell's equations, Helmholtz' decomposition, Poincaré/Friedrichs type estimate.
Received: 14.12.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 5, Pages 721–727
DOI: https://doi.org/10.1007/s10958-012-0955-4
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: P. Neff, D. Pauly, K.-J. Witsch, “On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Zap. Nauchn. Sem. POMI, 397, POMI, St. Petersburg, 2011, 115–125; J. Math. Sci. (N. Y.), 185:5 (2012), 721–727
Citation in format AMSBIB
\Bibitem{NefPauWit11}
\by P.~Neff, D.~Pauly, K.-J.~Witsch
\paper On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 397
\pages 115--125
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870111}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 5
\pages 721--727
\crossref{https://doi.org/10.1007/s10958-012-0955-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866950698}
Linking options:
  • https://www.mathnet.ru/eng/znsl4670
  • https://www.mathnet.ru/eng/znsl/v397/p115
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :57
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024