Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 240, Pages 78–81 (Mi znsl467)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotically Gaussian distribution for random perturbations of rotations of the circle

M. I. Gordina, M. Denkerb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Institute for Mathematical Stochastics, Georg-August-Universität Göttingen
Full-text PDF (138 kB) Citations (1)
Abstract: Let $T_{\epsilon,\omega}$ be a self-map of the two dimensional torus $\mathbb T^2$ given by the formula $T_{\epsilon,\omega}\colon(x,y)\to(2x,y+\omega+\epsilon x)\bmod1$. If $\epsilon$ is an irrational number, a version of the functional central limit theorem is formulated for variables of the form $n^{-1/2} \sum_{k=0}^{\infty}f \circ T^k_{\epsilon,\omega}$ where $f$ is a member of a class of real valued functions on $\mathbb T^2$ described in terms of $\epsilon$. The proof will be published elsewhere.
Received: 19.09.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 96, Issue 5, Pages 3493–3495
DOI: https://doi.org/10.1007/BF02175827
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: M. I. Gordin, M. Denker, “Asymptotically Gaussian distribution for random perturbations of rotations of the circle”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 78–81; J. Math. Sci. (New York), 96:5 (1999), 3493–3495
Citation in format AMSBIB
\Bibitem{GorDen97}
\by M.~I.~Gordin, M.~Denker
\paper Asymptotically Gaussian distribution for random perturbations of rotations of the circle
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 78--81
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691639}
\zmath{https://zbmath.org/?q=an:0954.60017}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3493--3495
\crossref{https://doi.org/10.1007/BF02175827}
Linking options:
  • https://www.mathnet.ru/eng/znsl467
  • https://www.mathnet.ru/eng/znsl/v240/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024