Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 397, Pages 20–52 (Mi znsl4666)  

This article is cited in 20 scientific papers (total in 20 papers)

Global solvability of a problem governing the motion of two incompressible capillary fluids in a container

I. V. Denisovaa, V. A. Solonnikovb

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: We deal with the motion of two incompressible fluids in a container, one of which is inside another. We take surface tension into account. We prove that this problem is uniquely solvable in an infinite time interval provided the initial velocity of the liquids is small and an initial configuration of the inner fluid is close to a ball. Moreover, we show that the velocity decays exponentially at infinity with respect to time and that the interface between the fluids tends to a sphere of the certain radius. The proof is based on the exponential estimate of a generalized energy and on a local existence theorem of the problem in anisotropic Hölder spaces. We follow the scheme developed by one of the authors for proving global solvability of a problem governing the motion of one incompressible capillary fluid bounded by a free surface.
Key words and phrases: two-phase problem with unknown interface, incompressible capillary fluid, Lagrangian coordinates, Hölder spaces.
Received: 03.11.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 5, Pages 668–686
DOI: https://doi.org/10.1007/s10958-012-0951-8
Bibliographic databases:
Document Type: Article
UDC: 532.526
Language: Russian
Citation: I. V. Denisova, V. A. Solonnikov, “Global solvability of a problem governing the motion of two incompressible capillary fluids in a container”, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Zap. Nauchn. Sem. POMI, 397, POMI, St. Petersburg, 2011, 20–52; J. Math. Sci. (N. Y.), 185:5 (2012), 668–686
Citation in format AMSBIB
\Bibitem{DenSol11}
\by I.~V.~Denisova, V.~A.~Solonnikov
\paper Global solvability of a~problem governing the motion of two incompressible capillary fluids in a~container
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 397
\pages 20--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870107}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 5
\pages 668--686
\crossref{https://doi.org/10.1007/s10958-012-0951-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866924649}
Linking options:
  • https://www.mathnet.ru/eng/znsl4666
  • https://www.mathnet.ru/eng/znsl/v397/p20
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :104
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024