Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 396, Pages 144–154 (Mi znsl4656)  

Beneš condition for discontinuous exponential martingale

R. Liptser

Department of Electrical Engineering Systems, Tel Aviv University, Tel Aviv, Israel
Full-text PDF (572 kB) Citations (1)
References:
Abstract: It is known that the Girsanov exponent $\mathfrak z_t$, being solution of Doléans-Dade equation $\mathfrak z_t=1+\int_0^t\mathfrak z_s\alpha(s)\,dB_s$ generated by Brownian motion $B_t$ and a random process $\alpha(t)$ with $\int_0^t\alpha^2(s)\,ds<\infty$ a.s., is the martingale provided that the Beneš condition
$$ |\alpha(t)|^2\le\mathrm{const.}\big[1+\sup_{s\in[0,t]}B^2_s\big],\quad\forall\ t>0, $$
holds true. In this paper, we show that $\int_0^t\alpha(s)\,dB_s$ can be replaced by a purely discontinuous square integrable martingale $M_t$ paths from the Skorokhod space $ \mathbb D_{[0,\infty)}$ having jumps $\alpha(s)\triangle M_t>-1$. The method of proof differs from the original Beneš proof.
Key words and phrases: Girsanov's exponential martingale, uniform integrability.
Received: 29.08.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 6, Pages 717–723
DOI: https://doi.org/10.1007/s10958-013-1162-7
Bibliographic databases:
Document Type: Article
UDC: 519.1+519.2
Language: English
Citation: R. Liptser, “Beneš condition for discontinuous exponential martingale”, Probability and statistics. Part 17, Zap. Nauchn. Sem. POMI, 396, POMI, St. Petersburg, 2011, 144–154; J. Math. Sci. (N. Y.), 188:6 (2013), 717–723
Citation in format AMSBIB
\Bibitem{Lip11}
\by R.~Liptser
\paper Bene\v s condition for discontinuous exponential martingale
\inbook Probability and statistics. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 396
\pages 144--154
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870137}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 6
\pages 717--723
\crossref{https://doi.org/10.1007/s10958-013-1162-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880576898}
Linking options:
  • https://www.mathnet.ru/eng/znsl4656
  • https://www.mathnet.ru/eng/znsl/v396/p144
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :72
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024