Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 396, Pages 88–92 (Mi znsl4652)  

Remark on locally constant self-similar processes

Yu. A. Davydov

Laboratoire P. Painlevé, University of Lille 1, Villeneuve d'Ascq, France
References:
Abstract: Let $X=\{X(t),\ t\in\mathbb R_+\}$ be a self-similar process with index $\alpha>0$. We show that if $X$ is locally constant, and if $\mathbf P\{X(1)=0\}=0$, then the law of $X(t)$ is absolutely continuous. The applications of this result to homogeneous functionals of a multi-dimensional fractional Brownian motion are discussed.
Key words and phrases: self similar processes, absolute continuity, fractional Brownian motion.
Received: 19.10.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 6, Pages 686–688
DOI: https://doi.org/10.1007/s10958-013-1158-3
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Yu. A. Davydov, “Remark on locally constant self-similar processes”, Probability and statistics. Part 17, Zap. Nauchn. Sem. POMI, 396, POMI, St. Petersburg, 2011, 88–92; J. Math. Sci. (N. Y.), 188:6 (2013), 686–688
Citation in format AMSBIB
\Bibitem{Dav11}
\by Yu.~A.~Davydov
\paper Remark on locally constant self-similar processes
\inbook Probability and statistics. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 396
\pages 88--92
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4652}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870133}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 6
\pages 686--688
\crossref{https://doi.org/10.1007/s10958-013-1158-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880617859}
Linking options:
  • https://www.mathnet.ru/eng/znsl4652
  • https://www.mathnet.ru/eng/znsl/v396/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :53
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024