Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 396, Pages 31–66 (Mi znsl4649)  

This article is cited in 4 scientific papers (total in 4 papers)

Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations

Ya. I. Belopolskayaa, W. A. Woyczynskib

a St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia
b Case Western Reserve University, Cleveland, OH, USA
Full-text PDF (719 kB) Citations (4)
References:
Abstract: In this paper, we discuss a probabilistic approach to the construction of a viscosity solution of the Cauchy problem for a system of nonlinear parabolic equations. Our approach is based on a reduction of the original problem to a system of quasilinear parabolic equation in the first step and to a system of fully coupled forward-backward stochastic differential equations in the second step. The solution of the stochastic problem allows us to construct a probabilistic representation of a viscosity solution of the original problem and state conditions to ensure the existence and uniqueness of this solution.
Key words and phrases: coupled forward-backward stochastic differential equations, viscosity solution, system of fully nonlinear and quasilinear parabolic equations.
Received: 23.11.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 6, Pages 655–672
DOI: https://doi.org/10.1007/s10958-013-1155-6
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Ya. I. Belopolskaya, W. A. Woyczynski, “Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations”, Probability and statistics. Part 17, Zap. Nauchn. Sem. POMI, 396, POMI, St. Petersburg, 2011, 31–66; J. Math. Sci. (N. Y.), 188:6 (2013), 655–672
Citation in format AMSBIB
\Bibitem{BelWoy11}
\by Ya.~I.~Belopolskaya, W.~A.~Woyczynski
\paper Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations
\inbook Probability and statistics. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 396
\pages 31--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870130}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 6
\pages 655--672
\crossref{https://doi.org/10.1007/s10958-013-1155-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880635061}
Linking options:
  • https://www.mathnet.ru/eng/znsl4649
  • https://www.mathnet.ru/eng/znsl/v396/p31
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :92
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024