Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 394, Pages 226–261 (Mi znsl4636)  

This article is cited in 3 scientific papers (total in 3 papers)

Selfinjective algebras of stable Calabi–Yau dimension three

S. O. Ivanov

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (812 kB) Citations (3)
References:
Abstract: In the present paper, we introduce the class of algebras, which allows the so-called DTI-family of relations. With few exceptions, the stable Calabi–Yau dimension of these algebras is equal to 3. We prove that all algebras of quaternion type are contained in this class, and we give some other examples of such algebras. Furthermore, we describe minimal projective bimodule resolutions for algebras from this class.
Key words and phrases: Calabi–Yau dimension, stable module category, selfinjective algebra, path algebra of a quiver with relations.
Received: 08.09.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 5, Pages 601–620
DOI: https://doi.org/10.1007/s10958-013-1152-9
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. O. Ivanov, “Selfinjective algebras of stable Calabi–Yau dimension three”, Problems in the theory of representations of algebras and groups. Part 22, Zap. Nauchn. Sem. POMI, 394, POMI, St. Petersburg, 2011, 226–261; J. Math. Sci. (N. Y.), 188:5 (2013), 601–620
Citation in format AMSBIB
\Bibitem{Iva11}
\by S.~O.~Ivanov
\paper Selfinjective algebras of stable Calabi--Yau dimension three
\inbook Problems in the theory of representations of algebras and groups. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 394
\pages 226--261
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870178}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 5
\pages 601--620
\crossref{https://doi.org/10.1007/s10958-013-1152-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884417616}
Linking options:
  • https://www.mathnet.ru/eng/znsl4636
  • https://www.mathnet.ru/eng/znsl/v394/p226
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :82
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024