|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 394, Pages 209–217
(Mi znsl4634)
|
|
|
|
Forms of higher degree over certain fields
A. L. Glazmana, P. B. Zatitskia, A. S. Sivatskib, D. M. Stolyarova a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Electrotechnical University, St. Petersburg, Russia
Abstract:
Let $F$ be a nonformally real field, $n,r$ positive integers. Suppose that for any prime number $p\le n$ the quotient group $F^*/{F^*}^p$ is finite. We prove that if $N$ is big enough, then any system of $r$ forms of degree $n$ in $N$ variables over $F$ has a nonzero solution. Also we show that if in addition $F$ is infinite, then any diagonal form with nonzero coefficients of degree $n$ in $|F^*/{F^*}^n|$ variables is universal, i.e. its set of nonzero values coincides with $F^*$.
Key words and phrases:
field, scalar product, system of equations, polynomial.
Received: 15.09.2011
Citation:
A. L. Glazman, P. B. Zatitski, A. S. Sivatski, D. M. Stolyarov, “Forms of higher degree over certain fields”, Problems in the theory of representations of algebras and groups. Part 22, Zap. Nauchn. Sem. POMI, 394, POMI, St. Petersburg, 2011, 209–217; J. Math. Sci. (N. Y.), 188:5 (2013), 591–595
Linking options:
https://www.mathnet.ru/eng/znsl4634 https://www.mathnet.ru/eng/znsl/v394/p209
|
Statistics & downloads: |
Abstract page: | 293 | Full-text PDF : | 74 | References: | 42 |
|