Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 394, Pages 20–32 (Mi znsl4629)  

This article is cited in 2 scientific papers (total in 2 papers)

$\mathrm{SL}_2$-factorisations of Chevalley groups

N. A. Vavilov, E. I. Kovach

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (622 kB) Citations (2)
References:
Abstract: Recently Liebeck, Nikolov, and Shalev noticed that finite Chevalley groups admit fundamental $\mathrm{SL}_2$-factorizations of length $5N$, where $N$ is the number of positive roots. From a recent paper by Smolensky, Sury, and Vavilov it follows that elementary Chevalley groups over rings of stable rank 1 admit such factorizations of length $4N$. In the present paper, we establish two further improvements of these results. Over any field the bound here can be improved to $3N$. On the other hand, for $\mathrm{SL}(n,R)$, over a Bezout ring $R$, we further improve the bound to $2N=n^2-n$.
Key words and phrases: Chevalley groups, fundamental $\mathrm{SL}_2$, semisimple factorisations, Bezout rings, parabolic subgroups, bounded generation.
Received: 30.06.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 5, Pages 483–489
DOI: https://doi.org/10.1007/s10958-013-1145-8
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, E. I. Kovach, “$\mathrm{SL}_2$-factorisations of Chevalley groups”, Problems in the theory of representations of algebras and groups. Part 22, Zap. Nauchn. Sem. POMI, 394, POMI, St. Petersburg, 2011, 20–32; J. Math. Sci. (N. Y.), 188:5 (2013), 483–489
Citation in format AMSBIB
\Bibitem{VavKov11}
\by N.~A.~Vavilov, E.~I.~Kovach
\paper $\mathrm{SL}_2$-factorisations of Chevalley groups
\inbook Problems in the theory of representations of algebras and groups. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 394
\pages 20--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870171}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 5
\pages 483--489
\crossref{https://doi.org/10.1007/s10958-013-1145-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884414794}
Linking options:
  • https://www.mathnet.ru/eng/znsl4629
  • https://www.mathnet.ru/eng/znsl/v394/p20
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :89
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024