Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 393, Pages 5–11 (Mi znsl4611)  

This article is cited in 4 scientific papers (total in 4 papers)

Inverse source problem for the 1-D Schrödinger equation

S. A. Avdonina, V. S. Mikhaylovb

a Department of Mathematics and Statistics, University of Alaska Fairbanks, AK, USA
b St. Petersburg Department of V. A. Steklov Institute of Mathematics the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (181 kB) Citations (4)
References:
Abstract: We consider the inverse problem of determining a source in the dynamical Schrödinger equation $iu_t-u_{xx}+q(x)u=w(t)a(x)$, $0<x<1$, with Dirichlet boundary conditions and zero initial condition. From the measurement $u_x(0,t)$, $0<t<T$, we recover unknown $a(x)$ provided $q(x)$ and $w(t)$ are given. We describe also how to recover $a(x)$ and $q(x)$ from the measurements at the both boundary points.
Key words and phrases: inverse problems, Schrödinger equation.
Received: 27.10.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 4, Pages 513–516
DOI: https://doi.org/10.1007/s10958-012-0933-x
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: S. A. Avdonin, V. S. Mikhaylov, “Inverse source problem for the 1-D Schrödinger equation”, Mathematical problems in the theory of wave propagation. Part 41, Zap. Nauchn. Sem. POMI, 393, POMI, St. Petersburg, 2011, 5–11; J. Math. Sci. (N. Y.), 185:4 (2012), 513–516
Citation in format AMSBIB
\Bibitem{AvdMik11}
\by S.~A.~Avdonin, V.~S.~Mikhaylov
\paper Inverse source problem for the 1-D Schr\"odinger equation
\inbook Mathematical problems in the theory of wave propagation. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 393
\pages 5--11
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870200}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 4
\pages 513--516
\crossref{https://doi.org/10.1007/s10958-012-0933-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866552574}
Linking options:
  • https://www.mathnet.ru/eng/znsl4611
  • https://www.mathnet.ru/eng/znsl/v393/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :89
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024