Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 392, Pages 202–217 (Mi znsl4585)  

This article is cited in 2 scientific papers (total in 2 papers)

On summatory functions for automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (275 kB) Citations (2)
References:
Abstract: Let $\lambda_f(n)$ denote the $n$th normalized Fourier coefficient of a primitive holomorphic cusp form $f$ for the full modular group. Let $\Delta(x,f\otimes f)$ be the error term in the asymptotic formula of Rankin and Selberg for
$$ \sum_{n\le x}\lambda_f(n)^2. $$
It is proved that $\Delta(x,f\otimes f)=\Omega(x^{3/8})$ and
$$ \sum_{n\le x}\lambda_f(n^2)=\Omega(x^{1/3}). $$
Other summatory functions associated with automorphic $L$-functions are also studied.
Key words and phrases: authomorphic $L$-function, summatory function, omega result.
Received: 18.04.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 184, Issue 6, Pages 776–785
DOI: https://doi.org/10.1007/s10958-012-0899-8
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On summatory functions for automorphic $L$-functions”, Analytical theory of numbers and theory of functions. Part 26, Zap. Nauchn. Sem. POMI, 392, POMI, St. Petersburg, 2011, 202–217; J. Math. Sci. (N. Y.), 184:6 (2012), 776–785
Citation in format AMSBIB
\Bibitem{Fom11}
\by O.~M.~Fomenko
\paper On summatory functions for automorphic $L$-functions
\inbook Analytical theory of numbers and theory of functions. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 392
\pages 202--217
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4585}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 184
\issue 6
\pages 776--785
\crossref{https://doi.org/10.1007/s10958-012-0899-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864289796}
Linking options:
  • https://www.mathnet.ru/eng/znsl4585
  • https://www.mathnet.ru/eng/znsl/v392/p202
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :45
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024