Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 392, Pages 146–158 (Mi znsl4582)  

This article is cited in 1 scientific paper (total in 1 paper)

Problems on the maximum of a conformal invariant in the presence of a high degree of symmetry

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (202 kB) Citations (1)
References:
Abstract: The problem on the maximum of the conformal invariant
$$ 2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\prod_{1\leq k<l\leq n}|a_k-a_l|, $$
for all systems of points $\{a_1,\dots,a_n\}$ and all systems $\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains satisfying the condition $a_k\in D_k$, $k=1,\dots,n$, is investigated. Here $M(D,a)$ is the reduced module of a domain $D$ with respect to a point $a\in D $. It is assumed that $n$ is even and systems of points $a_1,\dots,a_n$ under consideration have a high degree of symmetry.
Key words and phrases: reduced module of a domain, conformal radius of a domain, conformal invariant.
Received: 30.09.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 184, Issue 6, Pages 746–752
DOI: https://doi.org/10.1007/s10958-012-0895-z
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: G. V. Kuz'mina, “Problems on the maximum of a conformal invariant in the presence of a high degree of symmetry”, Analytical theory of numbers and theory of functions. Part 26, Zap. Nauchn. Sem. POMI, 392, POMI, St. Petersburg, 2011, 146–158; J. Math. Sci. (N. Y.), 184:6 (2012), 746–752
Citation in format AMSBIB
\Bibitem{Kuz11}
\by G.~V.~Kuz'mina
\paper Problems on the maximum of a~conformal invariant in the presence of a~high degree of symmetry
\inbook Analytical theory of numbers and theory of functions. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 392
\pages 146--158
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4582}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 184
\issue 6
\pages 746--752
\crossref{https://doi.org/10.1007/s10958-012-0895-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864286744}
Linking options:
  • https://www.mathnet.ru/eng/znsl4582
  • https://www.mathnet.ru/eng/znsl/v392/p146
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :52
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024