Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 391, Pages 18–34 (Mi znsl4566)  

This article is cited in 7 scientific papers (total in 7 papers)

Bounds of a number of leaves of spanning trees

A. V. Bankevicha, D. V. Karpovb

a Saint-Petersburg State University, Saint-Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (273 kB) Citations (7)
References:
Abstract: We prove that every connected graph with $s$ vertices of degree not 2 has a spanning tree with at least $\frac14(s-2)+2$ leaves.
Let $G$ be a connected graph of girth $g$ with $v$ vertices. Let maximal chain of successively adjacent vertices of degree 2 in the graph $G$ does not exceed $k\ge1$. We prove that $G$ has a spanning tree with at least $\alpha_{g,k}(v(G)-k-2)+2$ leaves, where $\alpha_{g,k}=\frac{[\frac{g+1}2]}{[\frac{g+1}2](k+3)+1}$ for $k<g-2$; $\alpha_{g,k}(v(G)-k-2)+2$ for $k\ge g-2$.
We present infinite series of examples showing that all these bounds are exact.
Key words and phrases: spanning tree, leaves, number of leaves.
Received: 15.09.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 184, Issue 5, Pages 564–572
DOI: https://doi.org/10.1007/s10958-012-0881-5
Bibliographic databases:
Document Type: Article
UDC: 519.172.1
Language: Russian
Citation: A. V. Bankevich, D. V. Karpov, “Bounds of a number of leaves of spanning trees”, Combinatorics and graph theory. Part III, Zap. Nauchn. Sem. POMI, 391, POMI, St. Petersburg, 2011, 18–34; J. Math. Sci. (N. Y.), 184:5 (2012), 564–572
Citation in format AMSBIB
\Bibitem{BanKar11}
\by A.~V.~Bankevich, D.~V.~Karpov
\paper Bounds of a~number of leaves of spanning trees
\inbook Combinatorics and graph theory. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 391
\pages 18--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4566}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 184
\issue 5
\pages 564--572
\crossref{https://doi.org/10.1007/s10958-012-0881-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884301886}
Linking options:
  • https://www.mathnet.ru/eng/znsl4566
  • https://www.mathnet.ru/eng/znsl/v391/p18
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :72
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024