Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 210–236 (Mi znsl4552)  

This article is cited in 6 scientific papers (total in 6 papers)

Quasimorphisms, random walks, and transient subsets in countable groups

A. V. Malyutin

St. Petersburg Department Steklov Mathematical Institute RAN, St. Petersburg, Russia
Full-text PDF (368 kB) Citations (6)
References:
Abstract: We study interrelations between the theory of quasimorphisms and theory of random walks on groups, and establish the following criterion of transience for subsets of groups: if a subset of a countable group has bounded images under any three linearly independent homogeneous quasimorphisms on the group, then this subset is transient for all nondegenerate random walks on the group. From this it follows by results of M. Bestvina, K. Fujiwara, J. Birman, W. Menasco, and others that, in a certain sense, generic elements in mapping class groups of surfaces are pseudo-Anosov, generic braids in Artin's braid groups represent prime links and knots, generic elements in the commutant of every non-elementary hyperbolic group have large stable commutator length, etc.
Key words and phrases: quasimorphism, random walk, transience, mapping class group, pseudo-Anosov, braid, knot, commutator.
Received: 15.02.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 181, Issue 6, Pages 871–885
DOI: https://doi.org/10.1007/s10958-012-0721-7
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: A. V. Malyutin, “Quasimorphisms, random walks, and transient subsets in countable groups”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 210–236; J. Math. Sci. (N. Y.), 181:6 (2012), 871–885
Citation in format AMSBIB
\Bibitem{Mal11}
\by A.~V.~Malyutin
\paper Quasimorphisms, random walks, and transient subsets in countable groups
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 390
\pages 210--236
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4552}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 181
\issue 6
\pages 871--885
\crossref{https://doi.org/10.1007/s10958-012-0721-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858750764}
Linking options:
  • https://www.mathnet.ru/eng/znsl4552
  • https://www.mathnet.ru/eng/znsl/v390/p210
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:597
    Full-text PDF :115
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024