Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 182–200 (Mi znsl4550)  

This article is cited in 3 scientific papers (total in 3 papers)

The Monge problem in $\mathbb R^d$: Variations on a theme

Thierry Championa, Luigi De Pascaleb

a Institut de Mathématiques de Toulon et du Var U.F.R. des Sciences et Techniques, Université du Sud Toulon-Var, La Garde, France
b Dipartimento di Matematica Applicata, Universitá di Pisa, Pisa, Italy
Full-text PDF (291 kB) Citations (3)
References:
Abstract: In a recent paper the authors proved that, under natural assumptions on the first marginal, the Monge problem in $\mathbb R^d$ for cost given by a general norm admits a solution. Although the basic idea of the proof is simple, it involves some complex technical results. Here we will give a proof of the result in the simpler case of uniformly convex norm and we will also use very recent results by other authors [1]. This allows us to reduce the technical burdens while still giving the main ideas of the general proof. The proof of the density of the transport set given in the particular case of this paper is original.
Key words and phrases: Monge–Kantorovich problem, optimal transport problem, cyclical monotonicity.
Received: 01.06.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 181, Issue 6, Pages 856–866
DOI: https://doi.org/10.1007/s10958-012-0719-1
Bibliographic databases:
Document Type: Article
UDC: 519.852.33
Language: English
Citation: Thierry Champion, Luigi De Pascale, “The Monge problem in $\mathbb R^d$: Variations on a theme”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 182–200; J. Math. Sci. (N. Y.), 181:6 (2012), 856–866
Citation in format AMSBIB
\Bibitem{ChaDe 11}
\by Thierry~Champion, Luigi~De~Pascale
\paper The Monge problem in $\mathbb R^d$: Variations on a~theme
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 390
\pages 182--200
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4550}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 181
\issue 6
\pages 856--866
\crossref{https://doi.org/10.1007/s10958-012-0719-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858749155}
Linking options:
  • https://www.mathnet.ru/eng/znsl4550
  • https://www.mathnet.ru/eng/znsl/v390/p182
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :65
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024