|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 117–146
(Mi znsl4548)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
A presentation of the average distance minimizing problem
A. Lemenant Université Paris Diderot – Paris 7, U.F.R de Mathématiques, Paris, France
Abstract:
We talk about the following minimization problem
$$
\min F(\Sigma):=\int_\Omega d(x,\Sigma)\,\mathrm d\mu(x),
$$
where $\Omega$ is an open subset of $\mathbb R^2$, $\mu$ is a probability measure and where the minimum is taken over all the sets $\Sigma\subset\overline\Omega$ such that $\Sigma$ is compact, connected, and $\mathcal H^1(\Sigma)\leq\alpha_0$ for a given positive constant $\alpha_0$.
Key words and phrases:
average distance, shape optimisation, transportation network, regularity.
Received: 04.02.2011
Citation:
A. Lemenant, “A presentation of the average distance minimizing problem”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 117–146; J. Math. Sci. (N. Y.), 181:6 (2012), 820–836
Linking options:
https://www.mathnet.ru/eng/znsl4548 https://www.mathnet.ru/eng/znsl/v390/p117
|
Statistics & downloads: |
Abstract page: | 248 | Full-text PDF : | 108 | References: | 55 |
|