Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 69–91 (Mi znsl4546)  

This article is cited in 16 scientific papers (total in 16 papers)

A continuous theory of traffic congestion and Wardrop equilibria

G. Carliera, F. Santambrogiob

a CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Paris, France
b Laboratoire de Mathématiques, UMR CNRS 8628, Faculté des Sciences, Université Paris-Sud XI, Orsay, France
References:
Abstract: In the classical Monge–Kantorovich problem, the transportation cost only depends on the amount of mass sent from sources to destinations and not on the paths followed by each particle forming this mass. Thus, it does not allow for congestion effects, which depend instead on the proportion of mass passing through a same point or on a same path. Usually the travelling cost (or time) of a path depends on “how crowded” this path is. Starting from a simple network model, we shall define equilibria in the presence of congestion. We will then extend this theory to the continuous setting mainly following the recent papers [8, 10]. After an introduction with almost no mathematical details, we will give a survey of the main features of this theory.
Key words and phrases: optimal transportation, traffic congestion, Wardrop equilibria, minimal flow, degenerate elliptic PDEs, Eikonal equation.
Received: 14.10.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 181, Issue 6, Pages 792–804
DOI: https://doi.org/10.1007/s10958-012-0715-5
Bibliographic databases:
Document Type: Article
UDC: 519.852.3
Language: English
Citation: G. Carlier, F. Santambrogio, “A continuous theory of traffic congestion and Wardrop equilibria”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 69–91; J. Math. Sci. (N. Y.), 181:6 (2012), 792–804
Citation in format AMSBIB
\Bibitem{CarSan11}
\by G.~Carlier, F.~Santambrogio
\paper A continuous theory of traffic congestion and Wardrop equilibria
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 390
\pages 69--91
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4546}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 181
\issue 6
\pages 792--804
\crossref{https://doi.org/10.1007/s10958-012-0715-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858752438}
Linking options:
  • https://www.mathnet.ru/eng/znsl4546
  • https://www.mathnet.ru/eng/znsl/v390/p69
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :57
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024